Одним из основных понятий механики является понятие механической системы. Под механической системой понимают совокупность конечного или бесконечного числа материальных точек (или тел), взаимодействующих между собой в соответствии с третьим законом Ньютона. Отсюда следует, что движение каждой точки (или тела) системы зависит как от положения, так и от движения остальных точек рассматриваемой механической системы.

Системы различают свободные и несвободные. Система называется свободной, если все входящие в нее точки могут занимать произвольные положения и иметь произвольные скорости. В противном случае, т. е. когда материальные точки, входящие в систему, не могут занимать произвольных положений или же не могут иметь произвольных скоростей, система называется несвободной.

Примером свободной механической системы может служить солнечная система, в которой Солнце и планеты можно рассматривать как материальные тела, находящиеся под взаимным действием сил ньютонианского притяжения.

Примером несвободной системы может служить система, состоящая из точек, из которых одна или

несколько вынуждены при своем движении оставаться на каких-либо линиях или поверхностях.

С указанным делением систем на свободные и несвободные связано понятие связи.

Под связью в механике понимают условия, накладывающие ограничения на свободу перемещения точек системы. Связи могут накладывать ограничения как на положения точек, так и на их скорости. Практически связи осуществляются с помощью материальных тел или приспособлений (стержней, нитей, шарниров и т. п.).

Подобно тому как силы, действующие на точки системы, подразделяют на силы внутренние и силы внешние, так и связи, наложенные на точки системы, можно подразделить на связи внутренние и связи внешние. Под внутренними связями понимают такие связи, которые будучи наложены на точки системы, не препятствуют системе свободно перемещаться после того, как она внезапно отвердеет. Связь, не обладающая этим свойством, называется внешней. Например, если две точки твердого тела соединены между собой нерастяжимым и невесомым стержнем, то такая связь будет внутренней. Таким образом твердое тело можно рассматривать как систему, подчиненную внутренним связям. Если же одна из точек твердого тела шарнирно закреплена, то в этом случае связь будет внешней.

Система, подчиненная одним лишь внутренним связям, является свободной, так как она может перемещаться как свободное твердое тело. Если же в числе связей, наложенных на точки системы, имеются внешние связи, то система является несвободной.

Условия, ограничивающие свободу перемещения точек системы, аналитически выражаются в виде уравнений или неравенств вида.

где - время, - соответственно координаты и скорости точки системы,

отнесенные к некоторой инерциальной системе отсчета, относительно которой рассматривается движение данной системы.

Связи различают удерживающие и неудерживающие; первым соответствует знак равенства в (1.1), вторым - знак неравенства.

Удерживающие и неудерживающие связи иногда соответственно называют двухсторонними и односторонними связями. Удерживающая связь, препятствуя перемещению в одном направлении, препятствует также перемещению в противоположном направлении. Неудерживающая связь препятствует перемещению в одном направлении, но не препятствует перемещению в противоположном направлении.

Примером удерживающей связи могут служить две параллельные плоскости, между которыми происходит движение шарика. Рассматривая среднюю между ними плоскость как координатную плоскость получаем уравнение связи в виде: Если же шарик движется по горизонтальной плоскости любой момент может покинуть ее, то эта плоскость будет являться неудерживающей связью. Условие такой связи будет выражаться неравенством (или ).

Другим примером неудерживающей связи может служить нить с шариком на конце. Принимая точку подвеса нити за начало координат и считая нить нерастяжимой, можем условие этой связи записать в виде неравенства

где - координаты шарика, - длина нити.

Если в процессе движения шарика выполняется неравенство

то это означает, что нить ослаблена и шарик освободился от связи.

Если же при движении шарика выполняется равенство

то это означает, что нить натянута, и на шарик действует связь.

В зависимости от того, содержит ли уравнение связи в явном виде время или нет, связи подразделяются на нестационарные (реономные) и стационарные (склерономные).

Связи, которые накладывают ограничения только на положения точек системы, называются конечными или геометрическими; аналитически они выражаются уравнением

Здесь и в дальнейшем предполагаем связи удерживающими.

Если же связи накладывают ограничения не только на положения точек, но и на их скорости, то они называются дифференциальными или кинематическими, и их аналитическое выражение имеет вид

Связи подразделяют также на голономные и неголономные. К голономным связям относят все конечные или геометрические связи вида (1.2), т. е. все связи, которые накладывают ограничения на возможные положения точек системы. К голономным связям относятся также и дифференциальные связи, которые путем интегрирования могут быть приведены к соотношениям вида (1.2):

где - некоторые функции координат возможно, времени .

Если же дифференциальные связи вида (1.4) не могут быть путем интегрирования приведены к конечным соотношениям вида (1.2), то они называются

неголономными или неинтегрируемими. Г. Герц обратил внимание на важность различия между голономными и неголономными связями для понятия виртуального перемещения системы.

Легко видеть, что если голономные связи накладывают ограничения на возможные положения точек системы, то неголономные связи накладывают ограничения на скорости точек системы. Это следует из того, что уравнение неголономной связи (1.4) всегда может быть представлено в следующем виде:

Механические системы, подчиненные голономным связям, называются голономными системами. Если же в числе связей имеются неголономные, то системы называются неголономными.

Если на систему наложены только неголономные связи, то такая система называется сдвершенно неголономной или собственно неголономной.

Классическим примером движения неголономной системы может служить качение твердого шара по шероховатой плоскости (например, движение бильярдного шара).

Пусть твердый шар радиусом катится без скольжения по абсолютно шероховатой плоскости. Возьмем две системы координат с общим началом в центре шара С. Одна из них (система пусть движется поступательно, а вторая (система ) пусть будет жестко связана с шаром (рис. 1).

Положение шара в каждый момент времени может быть определено пятью координатами: двумя координатами центра шара (третья координата ) и тремя углами Эйлера: углом прецессии углом нутации 0 и углом собственного вращения (рис. 1). Условием связи в рассматриваемой задаче является условие касания шара с плоскостью и обращение

в нуль скорости точки А касания шара. Принимая центр шара С за полюс и обозначая его скорость через мгновенную угловую скорость вращения шара - через , а вектор-радиус, проведенный из центра шара в точку касания , - через , можем записать скорость точки А в следующем виде:

Проектируя это векторное равенство на оси координат и удовлетворяя условию связи получаем

где - составляющие вектора угловой скорости . Последнее уравнение интегрируется и дает одно уравнение связи показывающее, что центр шара С движется в плоскости, параллельной плоскости и отстоящей от нее на расстоянии, равном радиусу шара R.

Всякое свободное тело в пространстве имеет шесть степеней свободы: оно может перемещаться вдоль трех осей и вращаться относительно этих осей. В свободном состоянии тела находятся редко, в большинстве случаев их перемещение ограничено связями. Связями называют ограничения, исключающие возможность движения тела в определенном направлении. Если па закрепленное тело действуют активные силы, то в связях возникают реактивные силы или реакции, дополняющие систему активных сил до равновесной. Совокупность активных и реактивных уравновешенных сил определяет напряженное состояние тела и его деформацию.

Реакции связей находят с помощью уравнений равновесия. При этом решение ведется по следующему плану:

  • выявляют внешние активные силы, приложенные к выделенному телу или группе тел;
  • выделенный объект (тело) освобождают от связей и вместо них прикладывают силы реакции связей;
  • выбрав координатные оси, составляют уравнения равновесия и, решив их, находят силы реакции связей.

Для пространственной системы сил можно составить шесть уравнений равновесия (13.7). С помощью этих уравнений определяются шесть неизвестных реакций.

Задачи, решаемые только с помощью уравнений равновесия статики, называют статически определимыми. Если на выделенный объект будет наложено большее число связей, то задача становится статически неопределимой и для ее решения кроме уравнений равновесия необходимо использовать дополнительные уравнения, составляемые на основании анализа деформаций. В общем случае закрепление или соединение двух деталей может исключать от одной до шести степеней свободы, т.е. накладывать от одной до шести связей. В соответствии с этим в закреплении может возникнуть от одной до шести реакций. Количество реактивных сил и их направление зависят от характера связей.

Приведем наиболее распространенные типы закрепления и соединения деталей.

  • 1. Соединения, исключающие возможность перемещения только в одном направлении. В таких соединениях возникает только одна реакция определенного направления. К соединениям этого типа относятся:
    • а) соединение посредством касания двух тел в точке или по линии. При касании возникает реакция, направленная по общей нормали к поверхностям касания (рис. 13.5). Такое соединение называется шарнирно-подвижным;

Рис . 13.5.

  • б) соединение, осуществляемое тросом, нитыо, цепыо, дает реакцию, направленную вдоль гибкой связи, причем такая связь может работать только на растяжение (см. рис. 13.5, б );
  • в) соединение в виде жесткого прямого стержня с шарнирным закреплением концов также дает реакцию, направленную вдоль оси стержня (см. рис. 13.5, в) у но может работать как на растяжение, так и па сжатие.

Рис. 13.6.

На рис. 13.5, г показано тело с тремя наложенными на него связями; каждая связь исключает возможность движения в одном направлении и дает одну реакцию, направление которой известно.

  • 2. Закрепление или соединение, исключающее перемещения по двум направлениям и соответственно дающее две реакции, носит название шарнирно-неподвижной опоры или цилиндрического шарнира (рис. 13.6).
  • 3. Соединение, исключающее перемещения по трем направлениям и дающее три реакции, носит название пространственного или шарового шарнира (рис. 13.7).
  • 4. Закрепление, исключающее все шесть степеней свободы, носит название жесткого закрепления или заделки. В заделке могут возникнуть шесть реактивных силовых факторов - три реактивные силы и три реактивных момента (рис. 13.8). При действии на тело с жесткой заделкой сил, расположенных в одной плоскости, в заделке возникают две реактивные силы и один реактивный момент.

Рис. 13.7.

Рис. 13.8.

При расчетах опоры схематизируют и условно делят на три основных группы:

  • шарнирно-подвижная (рис. 13.9, а), воспринимающая только одну линейную реакцию /?;
  • шарнирно-неподвижная (рис. 13.9, б), воспринимающая две линейные реакции R и Н.
  • защемление , или заделка (рис. 13.9, в ), воспринимающая линейные реакции R и Н и момент М.

Рис. 13.9.

При соприкосновении реальных тел и при их относительном движении в местах их контакта возникают силы трения, которые можно рассматривать как особый вид реактивных сил. Сила трения расположена в плоскости касания тел; при движении она направлена в сторону, противоположную относительной скорости тела.

Пример. Вал 1 с закрепленным на нем зубчатым колесом 2 установлен в двух подшипниках А и В. Па свободном конце вала насажен шкив ременной передачи 3 (рис. 13.10), Известны геометрические размеры а , с, передававшие крутящий момент М, диаметр шкива Д все параметры конического зубчатого колеса, а также соотношение сил натяжения ремня F a JF al = 2. Требуется определить реакции опор и силы натяжения ремня.


Рис. 13.10.

Решение проводим в три этана.

1. Выявляем активные силы, действующие в системе. Па коническое зубчатое колесо действует пространственно расположенная сила, составляющие которой по осям координат обозначены соответственно F v F r и F a . Составляющая F { , называемая окружной силой, определяется но заданному крутящему моменту на основании уравнения моментов относительно оси z

Радиальная составляющая F r и осевая составляющая F a определяются но окружной силе F ( на основании заданной геометрии зубчатого конического колеса.

2. Освобождаем вал (объект равновесия) от связей и вместо них прикладываем силы реакции Х л У л, Х в, Y B Z B .

Подшипники А и В следует рассматривать как шарнирные опоры, так как в них всегда имеются зазоры. В опоре А возникают две реакции Х л и У л, так как эта опора запрещает перемещение вала только в поперечных направлениях. В правой опоре возникают три реакции Х в, У в и Z B , так как она ограничивает перемещение вала также и в осевом направлении. Активные и реактивные силы в совокупности образуют пространственную систему уравновешенных сил.

3. Выбираем систему координат: оси х и у располагаем в плоскости, перпендикулярной оси вала, а ось z направляем по оси вала. Составляем шесть уравнений равновесия, используя (13.7) и (13.8).

Используя заданное условие F al = 2F ii2 и решив уравнения равновесия, найдем силы F aV F a2 и реакции опор

Тела в природе бывают свободными и несвободными. Тела, свобода перемещения которых ничем не ограничена, называются свободными. Тела, ограничивающие свободу перемещения других тел, называются по отношению к ним связями .

Одним из основных положений механики является принцип освобождаемости от связей, согласно которому несвободное тело можно рассматривать как свободное, если отбросить действующие на него связи и заменить их силами – реакциями связей.

Очень важно правильно расставить реакции связей, иначе написанные уравнения окажутся неверными. Ниже приведены примеры замены связей их реакциями. На рисунках 1.1–1.8 показаны примеры замены реакциями сил, расположенных в плоскости.


а – тело весом G на гладкой поверхности;
б – действие поверхности заменено реакцией – силой R;
в – в точке А связь «опорная точка» или ребро;
г – реакции направлены перпендикулярно
опираемой или опирающейся плоскостям

Рисунок 1.1

Реакция гладкой поверхности всегда направлена по нормали к этой поверхности (рисунок 1.1). Реакция «невесомого» троса (нити, цепи, стержня) всегда направлена вдоль троса (нити, цепи, стержня) (рисунок 1.2).

Рисунок 1.6

На рисунке 1.7, а изображена бискользящая заделка. В плоскости данная опора допускает поступательное перемещение стержня как по горизонтали, так и по вертикали, но препятствует повороту (в плоскости). Реакцией такой опоры будет момент M C (рисунок 1.7, б).

Рисунок 1.7

Консоль (глухая или жесткая заделка) не допускает никакого перемещения детали. Реакцией такой опоры являются неизвестная по величине и направлению сила R A с углом α (или X A и Y A ) и момент Μ A (рисунок 1.8).

Рисунок 1.8

На рисунках 1.9 – 1.15 показаны примеры замены сил, расположенных в пространстве, их реакциями.

Шарнирно-неподвижная опора, или сферический шарнир (рисунок 1.9, а), заменена системой сил (рисунок 1.9, б) X A , Y A и Z A , т.е. силой, неизвестной по величине и направлению.

Рассмотрим тело, которое может перемещаться без трения по гладкой горизонтальной поверхности (Рис.1а ).

Пусть в качестве активной силы выступает сила веса $\vec{Р}$, приложенная в его центре тяжести. Реакция связи $\vec{N}$ представлена силой, распределенной по плоскости нижней грани этого тела, и ее можно считать приложенной в центре этой грани.

Принципиально картина не меняется, если поверхность тела или связи будет гладкой, но криволинейной (Рис.1б ).

Пусть тело в виде бруса с гладкой поверхностью опирается в точке А на идеально гладкую поверхность, а в точке В – на уступ (Рис.1в ).

Нетрудно догадаться, что тело не сможет находиться в равновесии, если в качестве активной силы выступает его собственный вес, однако равновесие возможно, если к этому брусу приложить некоторую другую внешнюю силу $\vec{F}$. При этом, как будет показано в следующей главе, равновесие возможно только в том случае, если линия действия этой силы проходит через точку пересечения линий действия реакций $R_A$ и $R_B$.

Итак, по поводу этого типа связи можно сделать следующий вывод: реакция идеально гладкой поверхности приложена в точке касания и направлена по нормали к поверхности тела или связи .

2. Гибкая невесомая и нерастяжимая нить. Рассмотрим тело, которое подвешено на двух таких нитях и находится в равновесии под действием собственного веса и реакций нитей, прикрепленных к телу в точках А и В (Рис.2 слева ).

Слева: Гибкая невесомая и нерастяжимая нить

слева )
справа )

Реакция связи равна силе натяжения нити, она направлена вдоль нити и от тела, которое эта нить удерживает.

3. Жесткий невесомый прямолинейный стержень. Реакция направлена вдоль стержня , который, в отличие от нити, может воспринимать как растягивающие ($\vec{S_B}$), так и сжимающие ($\vec{S_A}$) усилия (Рис.2 справа ).

Справа : Жесткий невесомый прямолинейный стержень

Гибкая невесомая и нерастяжимая нить (слева )
Жесткий невесомый прямолинейный стержень (справа )

Допускает перемещение закрепленным таким образом точки тела только вдоль опорной плоскости (Рис.3а ).

Реакция направлена перпендикулярно заштрихованной опорной площадке.

В учебной литературе этот вид связи также называют подвижным цилиндрическим шарниром .

Помимо стандартного обозначения, предусмотренного ГОСТом, на схемах эту связь изображают так, как показано на рис.3б .

Отметим, что четыре рассмотренные связи имеют одну общую особенность: соответствующие им реакции известны по направлению и неизвестны по величине. То есть с точки зрения алгебры каждая из этих реакций соответствует только одному неизвестному .

Препятствует перемещению закрепленной таким образом точки тела в горизонтальном и вертикальном направлениях. Это означает, что в общем случае реакция $\vec{R_A}$ такой связи неизвестна по величине и по направлению . В качестве неизвестных при ее определении можно выбрать модуль реакции – $|\vec{R_A}|$ и угол $\varphi$, который она образует с осью Ox , либо проекции вектора $\vec{R_A}$ на оси координат: R AX , R AY (Рис.4а ).

Эта связь допускает поворот тела вокруг рассматриваемой точки, поэтому в учебной литературе эту связь также называют неподвижным цилиндрическим шарниром.

Помимо стандартного обозначения, предусмотренного ГОСТом, на схемах она изображается так, как показано на рис.4б .

6. Сферический шарнир. В отличие от цилиндрического шарнира не допускает перемещения закрепленной таким образом точки тела в трех взаимно перпендикулярных направлениях. В качестве неизвестных при ее определении выбирают проекции этой реакции на оси координат: R AX , R AY , R AZ (Рис.5 ).

Все теоремы и уравнения статики выво-дятся из нескольких исходных положений, принимаемых без матема-тических доказательств и называемых аксиомами или принципами статики. Аксиомы статики представляют собою результат обобщений многочисленных опытов и наблюдений над равновесием и движением тел, неоднократно подтвержденных практикой. Часть из этих аксиом является следствиями основных законов механики, с которыми мы познакомимся в динамике.

Аксиома 1. Если на свободное абсолютно твердое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по модулю (F 1 = F 2) и направлены вдоль одной прямой в противоположные стороны (рис. 10).

Рис.10

Аксиома 1 определяет простейшую уравновешенную систему сил, так как опыт показывает, что свободное тело, на которое действует только одна сила, находиться в равнове-сии не может.

Аксиома 2. Действие данной си-стемы, сил на абсолютно твердое тело не изменится, если к ней прибавить или от нее отнять уравновешенную систему сил.

Эта аксиома устанавливает, что две системы сил, отличающиеся на уравнове-шенную систему, эквивалентны друг другу.

Следствие из 1-й и 2-й аксиом. Действие силы на абсо-лютно твердое тело не изменится, если перенести точку при-ложения силы вдоль ее линии действия в любую другую точку тела.

Рис.11

В самом деле, пусть на твердое тело действует приложенная в точке А сила (рис.11). Возьмем на линии действия этой силы произвольную точку В и приложим к ней две уравновешенные силы и , такие, что = , = . От этого действие силы на тело не изменится. Но силы и со-гласно аксиоме 1 также образуют уравновешенную систему, которая может быть отброшена. В резуль-тате на тело. Будет действовать только одна сила , равная , но приложен-ная в точке В .

Таким образом, вектор, изобра-жающий силу , можно считать приложенным в любой точке на линии действия силы (такой вектор называется скользящим).

Аксиома 3 (аксиома параллелограмма сил). Две силы, приложенные к телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю па-раллелограмма, построенного на этих силах, как на сторонах.

Вектор , равный диагонали параллелограмма, построенного на векторах и (рис.12), называется геометрической суммой векторов и : = + .

Рис.12

Величина равнодействующей

Рис. 1.3.

Конечно, Такое равен-ство будет соблюдаться только при условии, что эти силы направлены по одной пря-мой в одну сторону. Если же векторы сил окажутся перпендикулярными, то

Следовательно, аксиому 3 можно еще формулировать так: две силы, приложенные к телу в одной точке, имеют равнодействую-щую, равную геометрической (векторной) сумме этих сил и прило-женную в той же точке.


Аксиома 4. При всяком действии одного материального тела на другое имеет место такое же по величине, но проти-воположное по направлению противодействие.

Закон о равенстве действия и противодей-ствия является одним из основных законов ме-ханики. Из него следует, что если тело А дей-ствует на тело В с силой , то одновременно тело В действует на тело А с такой же по модулю и направленной вдоль той же прямой, но противоположную сторону силой = (рис. 13). Однако силы и не образуют урав-новешенной системы сил, так как они приложены к разным телам.

Рис.13

Аксиома 5 (принцип отвердевания). Равновесие изме-няемого (деформируемого) тела, находящегося под действием дан-ной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым).

Высказанное в этой аксиоме утверждение очевидно. Например, ясно, что равновесие цепи не нарушится, если ее звенья считать сва-ренными друг с другом и т. д.

Связи и их реакции.

По определению, тело, которое не скреплено с другими телами и может совершать из данного положе-ния любые перемещения в пространстве, называется свободным (например, воздушный шар в воздухе). Тело, перемещениям которого в пространстве препятствуют какие-нибудь другие, скрепленные или соприкасающиеся с ним тела, называется несвободным . Все то, что ограничивает перемещения данного тела в пространстве, будем называть связью.

Например, тело лежащее на столе - несвободное тело. Связью его является плоскость стола, которая препятствует перемещению тела вниз.

Очень важен так называемый принцип освобождаемости , которым будем пользоваться в дальнейшем. Записывается он так.

Любое несвободное тело можно сделать свободным, если связи убрать, а действие их на тело заменить силами, такими, чтобы тело оставалось в равновесии.

Сила, с которой данная связь действует на тело, препятствуя тем ила иным его перемещениям, называется силой реакции (противодействия) связи или просто реакцией связи.

Так у тела, лежащего на столе, связь - стол. Тело несвободное. Сделаем его свободным - стол уберем, а чтобы тело осталось в равнове-сии, заменим стол силой, направленной вверх и равной, конечно, весу тела.

Направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу. Когда связь одновременно препятствует перемещениям тела по нескольким направлениям, направление реакции связи также наперед неизвестно и должно определяться в результате решения рассматриваемой задачи.

Рассмотрим, как направлены реакции некоторых основных видов связей .

1. Гладкая плоскость (поверхность) или опора. Гладкой будем называть поверхность, трением о которую данного тела можно в первом приближении пренебречь. Такая поверхность не дает телу перемещаться только по направлению общего перпен-дикуляра (нормали) к поверхностям соприкасающихся тел в точке их касания (рис. 14,а ). Поэтому реакция N гладкой поверхности или опоры направлена по общей нормали к поверхностям сопри-касающихся тел в точке их касания и приложена в этой точке. Когда одна из соприкасающихся поверхностей является точкой (рис. 14,б ), то реакция направлена по нормали к другой поверх-ности.

Если поверхности не гладкие, надо добавить еще одну силу - силу трения , которая направлена перпендикулярно нормальной реакции в сторону, противоположную возможному скольжению тела.

Рис.14 Рис.15

Рис.16

2. Нить. Связь, осуществленная в виде гибкой нерастяжимой нити (рис.15), не дает телу М удаляться от точки подвеса нити по направлению AM . Поэтому реакция Т натянутой нити направлена вдоль нити от тела к точке ее подвеса. Если даже заранее можно догадаться, что реакция направлена к телу, все равно ее надо направить от тела. Таково правило. Оно избавляет от лишних и ненужных предположений и, как убедимся далее, помогает установить сжат стержень или растянут.

3. Цилиндрический шарнир (подшипник). Если два тела соединены болтом, проходящим через отверстия в этих телах, то такое соединение называется шарнирным или просто шарниром; осевая линия болта называется осью шарнира. Тело АВ , прикреплен-ное шарниром к опоре D (рис.16,а ), может поворачиваться как угодно вокруг оси шарнира (в плоскости чертежа); при этом конец А тела не может переместиться ни по какому направлению, перпен-дикулярному к оси шарнира. Поэтому реакция R цилиндрического шарнира может иметь любое направление в плоскости, перпен-дикулярной к оси шарнира, т.е. в плоскости А ху. Для силы R в этом случае наперед не известны ни ее модуль R , ни направле-ние (угол ).

4. Шаровой шарнир и подпятник. Этот вид связи закреп-ляет какую-нибудь точку тела так, что она не может совершать никаких перемещений в пространстве. При-мерами таких связей служат шаровая пята, с помощью которой прикрепляется фото-аппарат к штативу (рис.16,б ) и подшипник с упором (подпятник) (рис. 16,в ). Реакция R шарового шарнира или подпятника может иметь любое направление в пространстве. Для нее наперед неизвестны ни модуль реакции R , ни углы, образуемые ею с осями х, у, z .

Рис.17

5. Стержень. Пусть в какой-нибудь конструкции связью является стержень АВ , закрепленный на концах шарнирами (рис.17). Примем, что весом стержня по сравнению с воспринимаемой им нагрузкой можно пре-небречь. Тогда на стержень будут действовать только две силы при-ложенные в шарнирах А и В . Но если стержень АВ находится в равновесии, то по аксиоме 1 приложенные в точках А и В силы должны быть направлены вдоль одной прямой, т. е. вдоль оси стержня. Следовательно, нагруженный на концах стержень, весом ко-торого по сравнению с этими нагрузками можно пренебречь, работает только на растяжение или на сжатие. Если такой стержень является связью, то реакция стержня будет направлена вдоль оси стержня.

6. Подвижная шарнирная опора (рис.18, опора А ) препятствует движению тела только в направ-лении перпендикулярном плоскости скольжения опоры. Реакция такой опоры направлена по нормали к поверхности, на которую опираются катки подвижной опоры.

7. Неподвижная шарнирная опора (рис.18, опора В ). Реакциятакой опоры проходит через ось шарнира и может иметь любое направление в плоскости чертежа. При решении задач будем реакцию изображать ее составляющими и по направлениям осей координат. Если мы, решив задачу, найдем и , то тем самым будет определена и реакция ; по модулю

Рис.18

Способ закрепления, показанный на рис.18, употребляется для того, чтобы в балке АВ не возникало дополнительных напряжений при изменении ее длины от изменения температуры или от изгиба.

Заметим, что если опору А балки (рис.18) сделать тоже непо-движной, то балка при действии на нее любой плоской системы сил будет статически неопределимой, так как тогда в три уравнения равновесия вой-дут четыре неизвестные реакции , , , .

8. Неподвижная защемляющая опора или жесткая заделка (рис.19). В этом случае на заделанный конец балки со стороны опорных плоско-стей действует система распределенных сил реакций. Считая эти силы приведен-ными к центру А

Иногда приходится исследовать равновесие нетвердых тел. При этом будем пользоваться предположением, что если это нетвердое тело находится в равновесии под действием сил, то его можно рассматривать как твердое тело, используя все правила и методы статики.