Оптические измерительные приборы чрезвычайно разнообразны. По количеству типов оптических приборов их можно сопоставить с электроизмерительными. На самом деле, очень многие приборы из других видов измерения - из механики, из теплофизики, из физико-химии - в качестве оконечного каскада или в качестве первичного датчика имеют те или иные оптические детали.

С самого начала следует определить, что в дальнейшем изложении будет считаться оптическим прибором. Вообще оптическим считается метод или прибор, регистрирующий электромагнитное излучение, видимое человеческим глазом, т. е. электромагнитные колебания с длинами волн от 760 нм до 350 нм. Однако развитие науки о свете привело к тому, что под оптическим и задачам и стали понимать измерение в более длинноволновой области -инфракрасное излучение - и в более коротковолновой области -ультрафиолетовое излучение. Соответственно, расширилось число методов и приборов, которые являются прерогативой оптиков. Чтобы убедиться в этом, достаточно вспомнить, что в оптическом приборостроении и в оптических исследованиях последних десятилетий оптическая наука прирастала в основном крайними, т. е. инфракрасной (ИК) и ультрафиолетовой (УФ) областями спектра. Поэтому сейчас под оптическими приборами и методами подразумевают практически все, что «родом» из видимого человеческим глазом электромагнитного излучения.

Ограничиваясь тематикой и объемом изложения, мы будем полагать, что читатель знаком с основами физической и геометрической оптики. Во всяком случае, здесь нет возможности излагать суть таких явлений, как дифракция, интерференция, поляризация и др., равно как останавливаться на основных законах оптики, например на фотоэффекте, принципах работы лазеров, на законах излучения, на синхротронном излучении и т. д. Для более подробного знакомства с физикой оптических явлений здесь даны ссылки на учебный материал, специально посвященный данному конкретному разделу оптики.

Прежде чем перейти к конкретному изложению принципов действия оптических приборов, имеет смысл раскатегорировать их по измеряемым физическим величинам или по области применения, что зачастую является одним и тем же. С такой точки зрения оптические измерительные приборы можно разделить на классы, например так, как показано на схеме рис. 8.1.

Фотометрические оптические приборы - это класс оптики для изменения световых потоков и величин, непосредственно связанных со световыми потоками: освещенности, яркости, светимости и силы света. Фотометры целесообразно разделять на традиционно оптические, измеряемые характеристики в которых имеют чувствительность, соответствующую чувствительности человеческого глаза, и так называемые фотометры энергетических фотометрических величин, т. е. те же характеристики безотносительно к чувствительности глаза человека. Естественно, что в энергетических фотометрах величины выражаются не в люменах, люксах, нитах, а в единицах механических:

Спектральные оптические приборы - огромный класс оптической техники, для которого общим является разложение электромагнитного излучения в спектр по длинам волн. Существуют спектроскопы - визуальные приборы,монохроматоры - приборы, выделяющие излучения на какой-либо фиксированной длине волны,полихроматоры, выделяющие излучение на нескольких длинах волн,спектрографы - регистрирующие весь спектр монохроматического излучения. Если в приборе кроме разложения излучения в спектр имеется возможность измерения каких-либо энергетических характеристик электромагнитного излучения, то такой прибор называетсяспектрофотометром иликвантометром.

Интерферометрами называют приборы, в которых основной измеряемой характеристикой является не амплитуда световой волны и связанная с ней энергия, а фаза электромагнитного колебания. Именно такой подход позволил создать самые точные на данный момент средства измерения, реально позволяющие измерять величины с погрешностями в 11-12 знаке. Именно поэтому интерферометры применяются в основном для решения задач, требующих от приборов предельно высокой точности, например, в эталонах, в обслуживании уникальных научных программ, в реализации сверхчувствительных методов анализа состава вещества и т.п.

Другие классы оптических приборов, представленные на схеме рис. 8.1не так обширны, как фотометры и спектрометры. Тем не менее они выделены вследствие того, что у них определяющим является специфическое физическое явление.

В поляриметрах используется такое волновое свойство света, как поляризация, т. е. определенная ориентация колебаний электромагнитной волны относительно направления распространения. Многие вещества обладают свойствами изменять направление поляризации. На этом принципе работают не только преобразователи для измерения магнитных величин, но и некоторые приборы для анализа состава веществ и материалов, напримерсахариметры.

Рефрактометры - приборы для измерения показателя преломления твердых тел, жидкостей и газов. В них используется изменение направления пучка света на границе раздела двух сред. Эти приборы используются в качестве индикаторов в хроматографах, в многочисленных метеорологических приборах специального назначения, в газовом анализе и т. д.

Гониометры - приборы для угловых измерений - в большинстве своем представляют собой зрительные трубы или лазеры, оптическая ось которых снабжена отсчетным угловым лимбом. Таким прибором можно измерять углы, последовательно наводя оптическую ось на два раздельных объекта. Сюда же можно отнести и оптические дальномеры, использующие измерения углов наблюдения одного и того же объекта двумя зрительными трубами. Гониометры широко применяются в топографии, в военной технике, в геодезических работах.

Измерительные микроскопы представляют собой приборы для увеличения видимых размеров (или углов наблюдения) различных объектов и измерения размеров увеличенных деталей. В разделе «Механические измерения» рассматривались два типа такой измерительной техники: это измеритель длин ИЗА и микроскоп Линника - прибор для измерения шероховатости поверхностей. Наиболее массовыми приборами такого типа являются обычные микроскопы, снабженныеокуляр-микрометром. Это позволяет оценивать размеры объема при непосредственном наблюдении его через микроскоп. Такими приборами широко пользуются врачи, биологи, ботаники и вообще все специалисты, работающие с небольшими объектами.

Приборы для измерения собственного теплового излучения тел называются пирометрами (от слова «пиро» - огонь). В этих приборах используются законы излучения нагретых тел - закон Планка, закон Стефана-Больцмана, закон Вина, закон Релея-Джинса. Этот класс приборов рассмотрен нами в разделе о температурных измерениях, где пирометры рассматриваются как средства неконтактного измерения температуры.

Статья посвящена разработанным ООО «НТП «ТКА» приборам для измерения основных световых и энергетических параметров и характеристик источников оптического излучения, в том числе и светодиодов.

Необходимость оперативного и достоверного измерения основных световых и энергетических параметров и характеристик источников излучения в видимой области спектра, таких как координаты цветности, коррелированная цветовая температура, коэффициент пульсации, яркость, освещенность и облученность, очевидна. Она продиктована стремительным развитием альтернативных источников оптического излучения (светодиодов), появлением различных вариантов дисплеев и световых табло, а также технологическими процессами, использующими источники оптического излучения.

Некоторые особенности построения приборов для измерения основных световых характеристик источников света

Измерение освещенности и яркости является простой фотометрической процедурой. Вместе с тем при проектировании и производстве люксметров и яркомеров приходится сталкиваться с достаточно серьезными проблемами по обеспечению соответствия выпускаемых приборов требованиям нормативных документов.

Так, например, фотоприемные устройства (ФПУ), являясь основной частью прибора для измерения оптического излучения, должны отвечать ряду электрических и фотометрических требований, зависящих от области применения и назначения. При разработке и производстве приборов для измерения параметров излучения необходимо знание этих требований, их особенностей, трудностей создания и путей их преодоления.

Устройство для формирования пространственной характеристики (входное устройство) формирует угол зрения, величина которого определена назначением разрабатываемого прибора. Так, например, входное устройство люксметра или пульсметра рассчитывается исходя из следующих соображений.

Освещенность поверхности, создаваемая точечным источником излучения, произвольно расположенным под углом. к ее нормали (рис. 1), определяется выражением:

Е = Е 0 ×сosβ, (1)

где Е 0 - освещенность, создаваемая точечным источником, расположенным нормально относительно поверхности; β - угол между нормалью и направлением на источник.

Рис. 1. Произвольно расположенный источник

Очевидно, измерения прибора, измеряющего освещенность, должен подчиняться такому же закону. Практически реализовать это условие без принятия определенных мер невозможно из-за зависимости коэффициента отражения поверхности оптических элементов приемной системы от угла падения излучения, описываемой формулой Френеля (2). Для выполнения этого условия приходится включать в оптическую схему фотоприемного устройства так называемую косинусную насадку, формирующую необходимый угол зрения и компенсирующую погрешность, вносимую поверхностным отражением оптических элементов.

Наиболее оптимальная косинусная насадка для рабочих средств (рис. 2) измерения оптического излучения представляет собой выполненный из молочного стекла элемент, равномерно рассеивающий падающее излучение по всем направлениям, обеспечивая тем самым выполнение закона Ламберта, согласно которому яркости светорассеивающей поверхности во всех направлениях одинаковы.


Рис. 2. Цилиндрическая косинусная насадка для рабочих средств

Поверхность материалов, используемых во входных устройствах, отражает падающее излучение по закону Френеля:

где φ 1 - угол между падающим на поверхность лучом света и нормалью; φ 2 - угол между преломленным лучом и нормалью. Графически эта зависимость представлена на рис. 3.


Рис. 3. Зависимость коэффициента отражения поверхности материала от угла падения

Это означает, что фотоприемное устройство регистрирует излучение, не отвечающее соотношению (1) при углах более 60°, т. е. отличное от реального излучения.

Для компенсации потерь отраженного излучения используют боковую грань диска из молочного стекла. Величина потока излучения, прошедшего внутрь стекла через боковые грани, пропорциональна величине цилиндрической освещенности. Под средней цилиндрической освещенностью понимают среднюю освещенность боковой поверхности вертикально расположенного цилиндра. Она определяется выражением:

где β - угол падения света от точечного источника на боковую поверхность вертикально расположенного цилиндра.

Световой поток Ф, попадающий на используемый в ФПУ светочувствительный элемент, является функцией отражения (ρ) и пропускания (τ) используемого материала, освещенности плоской поверхности (Е п) и цилиндрической освещенности боковой грани (Е ц):

Аналитически описать эту связь достаточно сложно из-за разброса параметров используемых материалов и геометрических размеров составляющих ФПУ элементов. При разработке и изготовлении ФПУ эмпирически находится оптимальное сочетание характеристик (марки молочного стекла, его толщины и высоты боковой поверхности, выступающей над корпусом), обеспечивающее заданную погрешность (1–2%), определяемую отличием полученной пространственной характеристики от теоретической.

Кроме того, при создании приборов для измерения оптического излучения необходимо решить задачу приведения спектральной характеристики чувствительности кремниевого фотодиода к относительной световой спектральной эффективности V(λ), табулированные значения которой регламентированы решениями комиссии МКО и ГОСТ 8.332.

Спектральная коррекция чувствительности фотоприемника Sф(λ) к заданному виду S(λ) осуществляется, как правило, цветными фильтрами. При этом коэффициент пропускания Т(λ) определяется соотношением:

Существует два основных способа расположения корригирующих светофильтров перед фоточувствительным элементом (рис. 4).


Рис. 4. Способы расположения корригирующих светофильтров: а) субтрактивный; б) субтрактивно-аддитивный (схема Дреслера)

В первом случае цветные фильтры с подходящими спектральными характеристиками располагаются последовательно друг за другом. При таком расположении (рис. 4а) излучение, прежде чем попасть на фотоприемник, последовательно фильтруется в каждом фильтре.

Другой способ расположения фильтров с требуемыми спектральными характеристиками показан на рис. 4б. При этом расположении, называемом схемой Дреслера, некоторые фильтры размещаются рядом один с другим. Различные части светового потока по-разному пропускаются фильтрами, прежде чем поток достигает приемной площадки фотоприемника. Результирующая кривая спектрального пропускания комбинации может эффективно регулироваться путем изменения относительного размера отдельных компонентов. Выполненные по такому принципу корректирующие фильтры могут с высокой степенью точности приблизить относительную спектральную чувствительность фотоприемника к идеальным значениям V(λ) при относительно высоком пропускании в максимумах кривых. Обычно на практике в частности и в расчете рассматриваемых приборов используется первый способ расположения светофильтров ввиду его технологичности и простоты расчетов.

Рассмотрим пример приведения спектральной характеристики кремниевого фотодиода Sф(λ) к относительной световой спектральной эффективности V(λ) (рис. 5).


Рис. 5. Вид кривых спектральной чувствительности кремниевого фотодиода S(.) и заданной меры V(.)

Характеристика S(λ) приводится к заданной кривой с помощью исправляющего фильтра, который может быть составлен из цветных стекол (рис. 6).


Рис. 6. Коррекция спектральной чувствительности фотоприемника с помощью цветных фильтров

Общий коэффициент пропускания исправляющего светофильтра рассчитывается по формуле:

где i - номера цветных стекол, составляющих светофильтр, к i (λ) - показатель поглощения цветных стекол с индексом, соответствующим номеру цветного стекла, t i - толщина соответствующих цветных стекол.

Тип стекол и их количество выбирались полуэмпирическим способом, исходя из наличия производимых и доступных для использования марок. Так, например, для видимой области спектра пригодными для коррекции оказались следующие цветные стекла: СЗС-21, СЗС-22, СЗС-23, ЖС-20, ЖЗС-5, ЖЗС-6, ОС-5. Из группы сине-зеленых стекол (СЗС) было выбрано СЗС-21, так как оно хорошо подавляет излучение в ближней ИК-области спектра (760–1200 нм), где наблюдается максимальная чувствительность кремниевых фотодиодов (λ max = 800–900 нм), выбранных для коррекции. Оранжевое стекло ОС-5 взаимозаменяемо со стеклом ЖС-20, а желто-зеленое стекло ЖЗС-6 взаимозаменяемо со стеклом ЖЗС-5.

Выбор марки стекол и их толщины и расчет спектрального коэффициента пропускания исправляющего светофильтра осуществляется таким образом, чтобы на каждой длине волны выполнялось условие: τ(λ)= V(λ)/Sф(λ).

Строгое выполнение этого условия на всех длинах волн для серийных цветных стекол и фотоприемников практически невозможно. Всегда будет иметь место отступление реально выполненной кривой S(λ) = Sa(λ)..(λ) от заданной, которое необходимо оценить в зависимости от назначения и способа градуировки фотометра, где применяется исправляющий светофильтр.

Оценка погрешности коррекции фотоприемника производится по методике, разработанной МКО (публикация № 53). Расчет погрешности коррекции фотометрической головки f 1 (Z) основан на отличии реакции на излучение идеального фотоприемника, табулированное значение спектральной чувствительности которого известно, и реального фотоприемника, относительное спектральное распределение которого отличается от того, при котором была произведена градуировка.


где S(λ) - относительная спектральная чувствительность исследуемого фотоприемника; SV(λ) - относительная спектральная чувствительность эталонного фотоприемника; Фa(λ) - относительное спектральное распределение источника «А», при котором производится градуировка; Ф i (λ) - относительная спектральная характеристика табулированных источников.

Приборы для измерения оптического излучения

Люксметры нового поколения «ТКА-Люкс» (рис. 7) и «ТКА-ПКМ-31» являются в настоящее время самыми востребованными и имеют метрологические характеристики на уровне приборов лучших мировых производителей рабочих средств измерения. Диапазон измерения освещенности в диапазоне 10–200000 лк с погрешностью 6–8%.


Рис. 7. Внешний вид люксметра «ТКА-Люкс»

«ТКА-Люкс/Эталон» является первым российским люксметром, метрологические характеристики которого отвечают требованиям, предъявляемым к рабочим эталонам. Он предназначен для измерения освещенности в видимой области спектра 380–760 нм, создаваемой стандартными источниками оптического излучения, расположенными нормально относительно приемника. Люксметр предназначен для практической реализации Государственной поверочной схемы средств из мерений световых величин в соответствии с ГОСТ 8.023-2000. Этот прибор по точности воспроизведения и передачи размеров единиц силы света и освещенности обеспечивает метрику прецизионных и рабочих средств измерений и отличается временной стабильностью и достоверностью. Допускаемая прибором основная относительная погрешность измерения освещенности не превышает 6,0%.

Разработанный комбинированный прибор люксметр+яркомер «ТКА-ПКМ» (02) служит для измерения освещенности (в диапазоне 10–200000 лк с погрешностью 8%) и яркости накладным способом (в диапазоне 10–200 000 кд/м 2 с погрешностью 10%) самосветящихся протяженных объектов (рис. 8).


Рис. 8. Внешний вид прибора «ТКА-ПКМ» мод.0,2

Прибор отличается от традиционных яркомеров отсутствием в схеме оптических элементов (линзы, объектива), что значительно упрощает конструкцию и удешевляет стоимость прибора при сохранении его точностных характеристик.

Для дистанционного определения яркости протяженных источников разработан недорогой, отвечающий современным метрологическим и техническим требованиям прибор для измерения яркости киноэкранов яркомер «ТКАЯР» (рис. 9), представляющий собой портативный малогабаритный прибор с автономным питанием, снабженный функцией запоминания результата измерения (Hold). Наводка на измеряемый объект осуществляется с помощью лазерного прицела.


Рис. 9. Внешний вид яркомера «ТКА-ЯР»

Для упрощения конструкции прибора в оптической схеме был применен нефокусируемый объектив. Нерегулируемая фокусировка на некоторое постоянное расстояние повышает оперативность работы с прибором, так как исключается одна из рабочих операций. При этом не требуется вводить никаких поправок к градуировке, поскольку показания прибора пропорциональны яркости объекта независимо от расстояния. Прибор имеет следующие технические характеристики:

  • угол зрения - 1,0–1,5°;
  • диапазон измерения - 10,0–2000,0 кд/м2;
  • спектральная коррекция - 2,0%;
  • суммарная погрешность - 10,0%;
  • расстояние до измеряемого объекта - не менее 7,0 м.

Измерение коэффициента пульсации источников излучения

Излучение источников света при питании от сети переменного тока (как правило, с частотой 50 Гц) является пульсирующим. Частота пульсации при этом равна удвоенной частоте питающего напряжения 100 Гц. В качестве критерия оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока источников излучения при питании их переменным током введен коэффициент пульсации освещенности (Кп), выражаемый формулой:

где Еmax - максимальное значение амплитуды переменой составляющей освещенности, Еmin - ее минимальное значение, Еср - среднее значение освещенности (рис. 10).


Рис. 10. Временная характеристика пульсирующей освещенности


Рис. 11. Внешний вид прибора «ТКА-ПКМ (08)»

Конструктивно прибор выполнен в виде двух блоков: фотоприемной части (ФПУ) и блока обработки информации. В блоке обработки информации размещена электронная схема, состоящая из АЦП (аналого-цифрового преобразователя), ЖКИ (жидкокристаллического индикатора) и процессора ADuС.

Прибор работает следующим образом. Сигнал с ФПУ подается на предварительный усилитель, где происходит одновременно с усилением сигнала и его масштабирование.

Усиленный сигнал подается на вход АЦП для преобразования в цифровую форму. Цифровой сигнал с выхода АЦП подается в микропроцессор для дальнейшей обработки. Проводится серия измерений с периодом 10 мс и определяются максимальное, минимальное и среднее значения освещенности.

Обработка сигнала ведется не синфазно периодам колебаний. В процессе измерения производится анализ нескольких периодов, и значения результатов выборок усредняются. Результат - значения max, min и среднее определяются в единицах освещенности лк. После нахождения параметров сигнала по формуле (8) вычисляется значение коэффициента пульсации.

Определение коэффициента пульсации источников излучения и освещенности выполняется прибором «ТКА-ПКМ (08)», информация в нем обрабатывается микропроцессором. Этот пульсметр-люксметр имеет следующие технические характеристики:

  • диапазон измерения коэффициента пульсации - 0–100%;
  • диапазон измерения освещенности - 10–200 000 лк;
  • погрешность измерения не превышает 10%.

    Измерение полного светового потока

    Важной световой характеристикой излучения светодиода является световой поток Ф (лм), определяющийся как интеграл всего потока излучения, заключенного под пространственной индикатрисой излучения (рис. 12).


    Рис. 12. Пространственное распределение силы света светильника

    Необходимо при этом отметить, что индикатрисы излучения светодиодов (в отличие от ламп накаливания) могут принимать самые причудливые формы. Эта особенность в немалой степени помогла в выборе нами пути построения измерительного прибора.

    Способы измерения полного светового потока

    Имеются два существенно различающихся способа измерения полного светового потока:

    • гониометрический метод;
    • метод «интегрирующей сферы».

    Гониометрический метод

    Метод основан на пошаговой фиксации значений силы света светодиода при его повороте на известный угол. Используемые для этих целей приборы - гониометр с достаточным угловым разрешением и фотометрическая головка с известным коэффициентом преобразования. Уменьшение погрешности измерений и получение наиболее достоверного углового распределения возможно при минимальном значении шага угла поворота светодиода относительно фотометра (или наоборот). Современные гониофотометрические установки имеют шаг несколько угловых минут. Одновременно выполняются измерения осевой силы света и ее пространственного распределения.

    На основании этих данных рассчитывается световой поток. Получение светового потока светодиода Ф с пространственным распределением силы света произвольной формы определяется с помощью индикатрис излучения большого числа плоскостей (nI v (Θ) при n→∞) и последующим вычислением среднего значения Ф:


    Процесс измерения полного светового потока гониометрическим методом является перспективным с точки зрения точности и информативности, но требует серьезных материальных затрат и времени.

    Для оперативного проведения простых технологических измерений полного светового потока нами был выбран так называемый метод «интегрирующей сферы», изложенный М. М. Гуревичем . В нем неизвестный световой поток сопоставляется с заранее вычисленным световым потоком образцового осесимметричного источника. Этот метод позволяет проводить измерения светового потока источника с произвольным распределением излучения в окружающем пространстве на порядки быстрее, чем гониометрический метод (рис. 13).


    Рис.13. Измерение светового потока с помощью фотометрического шара

    Такое сопоставление производится с помощью фотометрического шара, имеющего достаточно большой диаметр, окрашенного изнутри матовой белой краской и рассеивающего свет в соответствии с законом Ламберта.

    Теория фотометрического шара показывает, что световой поток, рассеиваемый его внутренней стенкой, распределяется по ней весьма равномерно. Поэтому если внутрь полой сферы, стенка которой имеет во всех точках одинаковый коэффициент отражения ρ, поместить источник S, излучающий световой поток Ф, то отраженный от стенки шара поток ρФ создаст во всех точках одну и ту же освещенность

    где r - радиус поверхности шара.

    Вторично отраженный световой поток ρ 2 Ф снова равномерно распределится по стенке шара, и дополнительная освещенность окажется:

    Общую (суммарную) освещенность в некоторой точке М на внутренней поверхности шара можно рассчитать следующим образом:

    где E и - освещенность в некоторой точке М при непосредственном падении света на поверхность шара. Очевидно, что эта величина не будет одинакова во всех точках, поскольку зависит как от положения источника S внутри шара, так и от его светораспределения.

    Однако если с помощью малого непрозрачного экрана Э (рис. 13), помещенного вовнутрь шара, защитить от попадания света непосредственно от источника малый участок стенки около точки М, то освещенность этого участка будет следующая:

    где α - коэффициент пропорциональности, зависящий только от свойств шара.

    Поэтому если испытуемый источник S со световым потоком Ф заменить внутри шара на образцовый источник S 0 c известным световым потоком Ф 0 , то очевидно, что освещенность в точке М будет:

    Или, разделив выражение (14) на (15), получим:


    Рис. 14. Вариант измерения полного светового потока светодиода

    Установив тем или другим способом отношение освещенностей, можно определить световой поток Ф интересующего нас источника.

    В связи с тем, что излучение светодиодов направленное, и угол излучения не превышает 2. возможно упрощение конструкции прибора за счет установки исследуемых светодиодов в стенке шара. Тем самым снижается количество элементов конструкции внутри шара и, следовательно, его геометрические размеры. Шар выполняется с двумя отверстиями. За первым размещается фотодиод с молочным стеклом и набором корригирующих светофильтров, а за вторым - исследуемые светодиоды (рис. 14).

    Определив реакцию фотодиода на излучение - например, фототоки, возникающие в измерительной цепи, - находим отношение i/i 0 и Е/Е 0 , которые можно считать равными между собой, и вычисляем световой поток Ф согласно выражению (16).

    В результате реализации на практике вышеизложенного метода мы получили рабочее средство измерения полного потока, показанного на рис. 15. Погрешность измерения полного светового потока белых светодиодов составила 7,0%, цветных светодиодов - 10,0%.


    Рис. 15. Внешний вид опытного экземпляра прибора «ТКА-КК» для измерения полного светового потока излучающего светодиода


    Рис. 16. Фотоприемное устройство (ФПУ) спектроколориметра

    Дополнительные погрешности суммарной спектральной коррекции, возникающие из-за селективности коэффициента отражения интегрирующей сферы, достаточно просто устраняются коррегирующими фильтрами. Измерения полного светового потока могут проводиться за считанные секунды операторами любого уровня квалификации (рис. 15).

    Измерение цветовых характеристик источников оптического излучения

    Общая концепция построения приборов

    Приборы ООО «НТП «ТКА» для определения цветовых характеристик источников (спектроколориметры) основаны на измерении спектрального состава оптического излучения с последующей математической обработкой результатов.

    Координаты цвета источников определяются значениями трех интегралов, взятых в пределах видимого спектра:


    где Ф еλ (λ) - спектральная плотность потока излучения; x‾(λ),y‾(λ),z‾(λ) - удельные координаты цветности.

    Координаты цветности рассчитываются:


    Фотоприемное устройство спектроколориметра показано на рис. 16.

    Излучение исследуемого источника, пройдя отделение для формирования пространственной характеристики (1), попадает в диспергирующее устройство. Устройство представляет собой полихроматор (2) с регистрацией разложенного излучения фотодиодной линейкой (3). Рабочий спектральный диапазон обусловлен характером поставленных задач.

    При определении коррелированной цветовой температуры спектральная плотность энергетической светимости М еλ (Вт·м3) абсолютно черного тела (АЧТ) определяется в соответствии с законом Планка по формуле:

    Координаты цвета АЧТ при данной температуре Т рассчитываются по формулам (17). Затем применяется переход от системы цветовых координат х, у МКО 1931 г. в более равноконтрастную систему u’, v’ МКО 1976 г. по следующим формулам:

    Такой же пересчет цветности производится для исследуемого источника излучения. Затем определяется массив координат цветности АЧТ и соответствующий массив температур.

    Минимальное расстояние в пространстве u, v между точкой цветности исследуемого источника (u0’, v0’) и точками цветности массива линии АЧТ (ui’, vi’) (рис. 17) определяется по формуле:


    Рис. 17. Линия АЧТ в системе цветовых координат u’,v’

    Затем сопоставляется рассчитанный массив цветности и массив температур АЧТ и определяется температура исследуемого источника Тj, соответствующая определенной точке цветности (u j , v j).

    Разработанный спектроколориметр «ТКА-ВД» предназначен для определения спектрального состава источника оптического излучения с последующим вычислением цветовых координат в выбранной системе координат (рис. 18). Оптическая схема прибора представляет собой полихроматор на дифракционной решетке с регистрацией разложенного излучения фотодиодной линейкой. Рабочий спектральный диапазон прибора (380–760) нм. Диапазон линейности сигналов достигает шести порядков. В зависимости от конфигурации входного устройства прибор работает как в режиме яркомера, так и в режиме измерения освещенности. Спектральное разрешение прибора не превышает 3 нм.


    Рис. 18. Внешний вид спектроколориметра «ТКА-ВД»

    Заключение

    В заключение хочется отметить следующее. Прибор становится измерительным средством тогда, когда он метрологически обеспечен. Порой на метрологию затрачиваются усилия, соизмеримые с усилиями, затраченными на разработку самого прибора. ООО «НТП «ТКА» оснащено современным, в том числе уникальным оборудованием, которое обеспечивает проведение калибровочных и поверочных (силами «Тест-Санкт-Петербург») работ при выпуске приборов серии «ТКА». По каждому типу приборов имеется утвержденное метрологическое обеспечение измерений и эталоны соответствующего уровня, госповерка которых ежегодно проводится в уполномоченных организациях Госстандарта РФ. Специалистами центра проводятся консультации по вопросам возможности применения приборов для решения конкретных задач и даются рекомендации по наилучшему выбору среди них. По заданию министерств, ведомств и отдельных заказчиков выполняются научно-исследовательские и опытно-конструкторские работы, связанные как с разработкой новых типов приборов, так и с исследованиями воздействия физических факторов на материальные объекты и изучением происходящих в связи с этим изменений.

    Литература

    1. www.ledcommunity.ru (Сайт объединения людей, сфера деятельности которых связана со светодиодной индустрией.)
    2. Заутер Г., Линдеманн М., Шперлинг А., Оно О. Фотометрия светодиодов // Светотехника. 2004. № 3.
    3. Никифоров С. Измерительная лаборатория для комплексного исследования характеристик светодиодов, применяемых в системах отображения информации // Компоненты и технологии. 2007. № 7.
    4. Круглов О. В., Кузьмин В. Н., Томский К. А. Измерение светового потока светодиодов // Светотехника. 2009. № 3.
    5. Сапожников Р. А. Теоретическая фотометрия. Л.: Энергия. 1977.
    6. Гуревич М. М. Фотометрия (теория, методы и приборы). Л.: Энергоатомиздат. 1983.
  • Оптико-механические измерительные приборы. Эти приборы находят широкое применение в измерительных лабораториях и в цехах для измерения размеров калибров, плоскопараллельных концевых мер длины, точных изделий, а также для настройки и проверки средств активного и пассивного контроля. Эти приборы основаны на сочетании оптических схем и механических передач. К оптико-механическим измерительным приборам относятся: пружинно-оптические измерительные головки (оптикаторы), оптиметры, ультраоптиметры, длиномеры, измерительные машины, интерферометры и ряд других приборов.



    Рис. 2.25. Оптиметр: а - вертикальный; б - горизонтальный




    Рис. 2.26. :


    7 - окуляр; 2 - зеркало; 3 - трехгранная призма; 4 - стеклянная пластинка; 5- призма полного отражения; 6 - измерительный стержень; 7 - зеркало поворотное; в - объектив

    Состоит из измерительной головки, называемой трубкой оптиметра, и вертикальной или горизонтальной стойки. В зависимости от вида стойки оптиметры подразделяют на вертикальные (например, ОВО-1, или ИКВ) (рис. 2.25, а) и горизонтальные (например, ОГО-1, или ИКГ) (рис. 2.25, б). Выпускают также горизонтальные и вертикальные проекционные оптиметры (ОГЭ-1 или ОВЭ-02). У последних отсчет результата измерения производится по шкале, проецируемой на экран. Вертикальные оптиметры предназначены для измерений наружных размеров деталей, а горизонтальные - для измерения как наружных, так и внутренних размеров.


    В оптической схеме оптиметров использованы принципы автоколлимации и оптического рычага. Принцип действия трубки оптиметра показан на рис. 2.26. Лучи от источника света направляются зеркалом 2 в щель трубки и, преломляясь трехгранной призмой 3, проходят через шкалу, имеющую 200 делений, нанесенных на плоскость стеклянной пластинки 4. Пройдя шкалу, луч попадает на призму полного отражения 5 и, отразившись от нее под прямым углом, направляется на объектив 8 и зеркало поворотное 7. Качающееся зеркало пружиной прижимается к измерительному стержню 6. При перемещении стержня 6, опирающегося на измеряемую деталь, зеркало 7 поворачивается на угол а вокруг оси, проходящей через центр опорного шарика, что вызывает отклонение отраженных от зеркала 7 лучей на угол 2а. Отраженный пучок лучей объективом превращается в сходящийся пучок, который дает изображение шкалы. При этом шкала смещается в вертикальном направлении относительно неподвижного указателя на некоторую величину, пропорциональную измеряемому размеру. Изображение шкалы наблюдается в окуляр 1, как правило, одним глазом, что утомляет контролера. Для обеспечения отсчета на окуляр 1 надевают специальную проекционную насадку, на экране которой можно наблюдать изображение шкалы обоими глазами. Основные метрологические характеристики оптиметров см. в табл. 2.9.


    (рис. 2.27, а) состоит из измерительной головки и вертикальной или горизонтальной стойки. Схема работы длиномера показана на рис. 2.27, б. Конструкция длиномера соответствует принципу Э.Аббе, т. е. основная шкала является продолжением измеряемой детали 3. В пиноли 5 закреплен измерительный наконечник 4, входящий в соприкосновение с измеряемой деталью 3. Сила тяжести пиноли 5 уравновешена противовесом 1, который перемещается внутри масляного демпфера 2. Пиноль 5 соединена с противовесом стальной лентой 9, перекинутой через блоки, причем измерительная сила длиномера определяется разностью масс пиноли 5 и противовеса 1. Эта сила регулируется с помощью грузовых шайб 8. Отсчеты по стеклянной шкале 6, освещаемой источником света S, производят с помощью отсчетного микроскопа 7 со спиральным нониусом.


    В настоящее время все большее распространение получают длиномеры с цифровым отсчетом, на табло которых высвечивается непосредственно измеряемый размер.


    Основные метрологические характеристики оптических длиномеров см. в табл. 2.9.


    Таблица 2.9. Основные метрологические характеристики оптико-механических приборов

    Наименование и тип прибора

    Цена деления шкалы, мкм

    Пределы измерений по шкале, мкм

    Пределы допускаемой погрешности на любом участке шкалы в пределах 100 делений, мкм

    Наибольшее измерительное усилие (колебание измерительного усилия), Н

    Вариация показаний, мкм

    Оптикаторы ГОСТ 28798-90:

    Улътраоптиметры ИКП-2

    Оптические длиномеры:

    Интерферометр мод. 264

    (вертикальный)

    1,5 ± 0,10 (0,02)

    1,5 ± 0,10 (0,02)

    1,5 ± 0,10 (0,02)




    Рис. 2.27. Оптический длиномер [а) и схема его работы (б) :


    1 - противовес; 2 - масляный демпфер; 3 - измеряемая деталь; 4 - измерительный наконечник; 5 - пиноль; 6 - стеклянная шкала; 7 - отсчетный микроскоп; 8 - грузовые шайбы; 9 - стальная лента; S - источник света

    Измерительные машины (одно-, двух- и трехкоординатные) предназначены для контроля сложных корпусных деталей, деталей значительных длин, измерения расстояний между осями отверстий, лежащих в одной или разных плоскостях, контроля параметров плоских профильных шаблонов в прямоугольных и полярных координатах. Двух- и трехкоординатные измерительные машины позволяют получать цифровой отсчет с автоматической выдачей результатов измерений на ЭВМ с последующим применением полученных программ в станках с ЧПУ для обработки аналогичных деталей (обработка по моделям). Более подробно измерительные машины рассмотрены в гл. 3.


    Интерферометры относятся к весьма точным оптико-механическим приборам. Они применяются в основном для проверки концевых мер длины, размеров и формы особо точных изделий и основаны на использовании явления интерференции световых волн. Интерферометры для линейных измерений подразделяются на контактные (ИКПВ - вертикальные, ИКПГ - горизонтальные) и бесконтактные. Контактные интерферометры имеют одинаковые интерференционные трубки с возможностью регулирования цены деления от 0,05 до 0,2 мкм.


    В трубке интерферометра (рис. 2.28) свет от лампы 1 направляется конденсором 2 через диафрагму 3 на разделительную полупрозрачную пластину 6.




    Рис. 2.28. :


    1 - лампа; 2 - конденсор; 3 - диафрагма; 4 - шторка; 5 - поворотное зеркало; 6 - полупрозрачная пластина; 7 - объектив; 8 - сетка; 9 - механизм перемещения окуляра; 10 - окуляр; 11 - компенсатор; 12 - зеркало; 13 - измерительный стержень; 14 - объект измерения

    Часть лучей, пройдя через полупрозрачную пластину 6 и компенсатор 11, отразится от зеркала 12, закрепленного на верхнем конце измерительного стержня 13, и через компенсатор 11 вновь вернется к полупрозрачной пластине 6. Другая часть пучка света, отразившись от рабочей поверхности разделительной полупрозрачной пластины 6, попадает на поворотное зеркало 5 и после отражения также возвратится к полупрозрачной пластине 6. Рис. 2.29. Вертикальный контактный интерферометр:




    Рис. 2.29. :


    1 - кронштейн; 2 - кремальера; 3 - стойка; 4 - основание; 5 - винт; 6 - винт микроподачи; 7 - стол; 8 - теплозащитный экран; 9 - хомут трубки; 10 - трубка интерферометра

    Таким образом, на рабочей поверхности полупрозрачной пластины 6 обе части пучка света интерферируют при небольшой разности хода. Объектив 7 проектирует интерференционную картину полос равной толщины в плоскость сетки 8. Интерференционные полосы и нанесенную на сетку шкалу наблюдают через окуляр 10.


    Интерференционные полосы равной толщины образуются в результате поворота зеркала 5 на небольшой угол относительно поверхности зеркала 12. При освещении белым светом на фоне шкалы видна одна черная (ахроматическая) полоса и по обе стороны от нее несколько окрашенных полос убывающей интенсивности. Черная полоса служит указателем при отсчетах по шкале, имеющей по 50 делений в обе стороны от нуля, который смещается пропорционально перемещению измерительного стержня 13.


    Вертикальный контактный интерферометр (рис. 2.29) имеет жесткое литое основание 4 и стойку 3. По направляющей стойки может перемещаться с помощью кремальеры 2 кронштейн 1, несущий трубку интерферометра 10. На хомуте трубки 9 закреплен теплозащитный экран 8. Стол 7 можно перемещать в вертикальном направлении винтом микроподачи 6 и стопорить в установленном положении винтом 5.


    Основные метрологические характеристики интерферометров см. в табл. 2.9.


    В последнее время отечественная промышленность стала выпускать бесконтактные лазерные интерферометры с цифровым отсчетом. Они позволяют измерять абсолютным методом детали больших размеров (до 60 м и более) с высокой производительностью и точностью. Цена деления таких приборов составляет от 0,1 до 0,01 мкм; погрешность измерения составляет 0,5 мкм на 1 м. Принципиальная схема одной из конструкций бесконтактного лазерного интерферометра представлена на рис. 2.30.




    Рис. 2.30. :


    1 - источник лазерного луча; 2 - неподвижное зеркало; 3 - пластина; 4 - V-образный рефлектор; 5 - основание рефлектора; 6 - измерительный стол; 7 - основание измерительного стола; 8 - неподвижное зеркало; 9- приемник; 10 - основание; 11 - показывающий прибор; 12 - корпус

    Таблица 2.10. Основные метрологические показатели микроскопов

    Тип микроскопа

    Верхние пределы измерений, мм

    Диапазон измерений плоских углов,

    Линейное увеличение объективов визирного микроскопа

    Цена деления шкалы барабанов микрометрических головок, мм

    Цена деления шкалы наклона линии центров

    Максимальный диаметр проверяемого изделия, мм

    Цена деления шкалы угломерной головки

    Предел основной допускаемой погрешности микроскопа в диапазоне измерений, мкм

    в продольном направлении

    в поперечном направлении

    1; 3; 5; 10; 20; 40х

    ИМЦ 100x50, А

    1; 3; 5; 10; 20; 40х

    0...25 мм ± 3 мкм

    1; 3; 5; 10; 20; 40х

    0...50 мм ± 5 мкм

    ИМЦ 150x50, А

    1; 1,5; 3,0; 5,0х

    0... 100 мм ± 6 мкм

    1; 1,5; 3,0; 5,0х

    ИМЦЛ 160x80, Б

    10; 15; 30; 50х

    10; 15; 30; 50х

    Поступающий от источника лазерного луча 1 пучок света полупрозрачной пластиной 3 делится на два потока. Один направляется на неподвижное зеркало 2 и, отразившись от него, возвращается к пластине 3. Другой, проходящий сквозь пластину 3, попадает на неподвижное зеркало 8. Отразившись от неподвижного зеркала 8 и V-образного рефлектора 4, пучок возвращается к пластине 3, где интерферирует с первым пучком.


    При помощи лазерных интерферометров проверяют двух- или трехкоординатные измерительные машины, микроскопы, прецизионные станки и другие точные механизмы.


    Оптические измерительные приборы .


    Эти приборы нашли применение в измерительных лабораториях для абсолютных и относительных измерений бесконтактным методом различных изделий сложного профиля (резьб, шаблонов, кулачков, фасонных режущих инструментов) и малых габаритных размеров, для точных измерений длин, углов, радиусов. Эти приборы построены на оптических схемах. К наиболее распространенным оптическим измерительным приборам относятся: микроскопы (инструментальный, универсальный, проекционный), проекторы, оптические длиномеры и угломеры, делительные головки, столы и др.


    Инструментальные и универсальные микроскопы предназначены для абсолютных измерений углов и длин различных деталей в прямоугольных и полярных координатах. В соответствии с ГОСТ 8074-82 выпускают микроскопы с микрометрическими измерителями двух типов: типа А - без наклона головки и типа Б - с наклоном головки. У микроскопов ИМ 100x50, А; ИМ 150x50, Б предусмотрен отсчет по шкалам микрометрических головок 25 мм и применение концевых мер длины, тогда, как микроскопы ИМЦ 100x50, А; ИМЦ 150x50, А; ИМ 150x50, Б; ИМЦЛ 160x80, Б оснащены цифровым отсчетом.


    Универсальные измерительные микроскопы отличаются от инструментальных большим диапазоном измерений и повышенной точностью. В них вместо микрометрических измерителей применены миллиметровые шкалы с отсчетными спиральными микроскопами.


    Основные метрологические характеристики указанных микроскопов представлены в табл. 2.10.




    Рис. 2.31. Микроскоп инструментальный модели ММИ [а], его отсчетное устройство (б), оптическая схема микроскопа [в) :


    1 - визирный микроскоп; 2 - стойка; 3 - винт; 4 - лампа подсветки; 5 и 12 - маховики; 6 и 8 - микрометрические винты; 7 - основание; 9 - измерительный стол; 10 - шариковые направляющие; 11- объектив; 13 - кронштейн; 14 - кольцо; 15 - тубус; I - миллиметровая шкала; II - круговая шкала


    Несмотря на конструктивные различия инструментальных и универсальных микроскопов принципиальная схема измерения во всех микроскопах общая - визирование различных точек контролируемой детали, перемещаемых для этого по взаимно перпендикулярным направлениям, и измерение этих перемещений посредством отсчетных устройств. Для обеспечения лучшего визирования микроскопы снабжают сменными объективами различной степени увеличения.


    В качестве примера рассмотрим конструкцию (рис. 2.31, а) и принцип измерения микроскопа инструментального модели ММИ. На массивном чугунном основании 7 в двух взаимно перпендикулярных направлениях на шариковых направляющих 10 перемещается измерительный стол 9 с помощью микрометрических винтов 6 и 8. Для отсчета перемещений на гильзе, скрепленной с метрической гайкой, имеется миллиметровая шкала I (рис. 2.31, б), а на барабане, связанном с микрометрическим винтом, - круговая шкала II с 200 делениями (на рис. 2.31, б показание микрометра равно 29,025). Объектив 11 с тубусом 15 установлен на кронштейне 13, который перемещается в вертикальном направлении по стойке 2. Стойка 2 с помощью маховика 5 может наклоняться у микроскопов типа Б в обе стороны для установки микроскопа под углом подъема измеряемой резьбы. Имеется лампа подсветки 4. Маховик 12, перемещающий кронштейн 13, служит для фокусировки микроскопа, причем установленное положение фиксируется винтом 3. Для точного фокусирования микроскопа вращают рифленое кольцо 14, при этом тубус 15 смещается по цилиндрическим направляющим кронштейна. К верхней части тубуса крепится сменная угломерная окулярная головка с визирным микроскопом 1 и отсчетным устройством.


    Оптическая схема микроскопа представлена на рис. 2.31, в. Измеряемая деталь АБ рассматривается через объектив ОБ микроскопа. Изображение детали АБ получается действительным, обратным и увеличенным.


    Глаз наблюдателя через окуляр ОК видит мнимое, обратное и еще раз увеличенное окуляром изображение детали А2Б2.


    Проекторы предназначены для контроля или измерения деталей сложного контура. Проектор состоит из объектива, дающего увеличенное изображение контролируемого изделия, и экрана, на котором оно рассматривается или сравнивается с сетками или предельными контурами. Проекторы бывают с экранами, работающими в проходящем и отраженном свете. Основные метрологические характеристики этих приборов представлены в табл. 2.11.


    Оптические делительные головки (рис. 2.32, а, б) служат для измерения углов, а также для разметки и нанесения делений на деталях при обработке. Прибор состоит из корпуса 8, внутри которого в подшипниках помещен шпиндель 9, отсчетного микроскопа 11 с нониусами, переднего центра 6 для установки детали, задней бабки 12 и станины 13. Поворот шпинделя отсчитывается предварительно по шкале 14, а. точно - по стеклянной шкале с помощью отсчетного микроскопа, которая жестко закреплена на шпинделе (рис. 2.32, в). Ось шпинделя может быть установлена в любое положение в пределах между горизонталью и вертикалью. Отсчет углов в этом случае ведут по шкале 14. Основные метрологические характеристики оптических делительных головок типа ОДГЭ см. в табл. 2.11.

    Таблица 2.11. Основные метрологические характеристики оптических приборов

    Наименование и тип прибора

    Цена деления основной шкалы (нониуса)

    Цена деления отсчетного устройства

    Увеличение отсчетного микроскопа

    Поле зрения

    Пределы показаний шкалы

    Пределы измерений прибором

    Предельные погреш­ности прибора (отсчет­ного устройства)

    Проекторы измерительные (ГОСТ 19795-82):

    Линейной:

    Дискретного цифрового отсчета:

    В продольном

    0 ... 100 мм, в

    поперечном

    вертикальном

    Оптические делительные головки (ТУ 3.3.199 - 80):

    Основного лимба

    ±(1 + sina/2) ±

    ± (2 + 2pisina/2)

    ±(5 / 5pisina/2)

    Оптический угломер

    Минутной шкалы 5"

    Автоколлиматоры визуальные (ТУ 3.3.1495 - 84):

    Минутной:

    Секундной шкалы:

    Предел разрешающей способности

    Оптические круглые столы предназначены для точных угловых измерений или поворотов на требуемые углы деталей, которые из-за Своей массы, формы и размеров не могут быть установлены в центрах или на оправках оптической делительной головки. Оптические круглые столы могут применяться также для точной разметки деталей по окружности или как точное приспособление для обработки деталей в полярной системе координат.


    Для измерения наружных и внутренних углов применяют различные оптические угломеры . Величина отсчета по шкале равна 10", а допустимая погрешность ±5".


    Наиболее точными угломерными приборами являются приборы, основанные на применении автоколлимационных зрительных труб. Одним из представителей таких приборов является автоколлиматор .


    Он предназначен для измерения углов, измерения прямолинейности и плоскостности направляющих, а также для определения взаимного углового расположения осей и плоскостей изделий в пространстве. Кроме визуальных автоколлиматоров бывают автоколлиматоры с фотоэлектрической регистрацией результатов, например автоколлиматор АФ-2, предназначенный для измерения угловых перемещений с точностью 1",


    Автоколлиматоры с фотоэлектрической регистрацией по сравнению с визуальными обеспечивают более высокую точность и скорость измерений. Основные характеристики некоторых автоколлиматоров см. в табл. 2.11.





    Рис. 2.32. Оптическая делительная головка (а), ее схема (б) и стеклянная шкала (в] :


    1 - тубус; 2 - лампа подсветки; 3, 4 и 74 - шкалы; 5 - поводок; В - передний центр; 7 - червячное колесо; 8- корпус; 9 - шпиндель; 10 - полусфера; 11 - микроскоп; 12 - задняя бабка; 13 - станина


    В последнее время в условиях возрастающей сложности контролируемых изделий находят все более широкое применение измерительные двухкоординатные системы. Они позволяют без переустановки изделия проводить более сложные измерения его угловых и линейных размеров в прямоугольной системе координат. К этим приборам относятся измерительные микроскопы, измерительные проекторы и измерительные двухкоординатные машины.


    Измерительные двухкоординатные машины (ИДМ) появились как результат естественного развития измерительных микроскопов и проекторов. Мерами в них служат штриховые или концевые меры длины, а также прецизионные измерительные винты. Эти машины характеризуются использованием высокоточных оснований, опор, направляющих и приводов для перемещения стола с изделием или измерительной головки. Результаты измерений в современных ИДМ выводятся на ЭВМ, чем достигается значительное повышение производительности измерений.


    Основные метрологические характеристики оптико-механических двухкоординатных машин, их преимущества, недостатки и область применения представлены в табл. 2.12.


    Таблица 2.12. Основные метрологические характеристики оптико-механических измерительных двухкоординатных машин

    Тип прибора

    Пределы измерений, мм

    Погршность измерения

    Инерционность, с

    Преимущества

    Недостатки

    Область применения

    Измеритель ный микроскоп

    х = 0...70 у = 0...50

    1 мкм; 10 мкм; 6"

    Легко переоснащаемый визуальный измерительный микроскоп для работы в проходящем и отраженном свете

    Небольшое поле зрения (от 2... до 6 мм) в зависимости от увеличения

    Лаборатории и производство, линейные и угловые измерения наружных и внутренних размеров

    Инструментальный проекционный микроскоп

    х= 0...150 у = 0...75

    Можно вести наблюдения либо через окуляр, либо по экрану проектора как в отраженном, так и в проходящем свете

    Дороже измерительного микроскопа

    Измерительные лаборатории, измерение калибров, резьб, зубчатых колес, шаблонов, изделий сложной формы

    Универсальный измерительный микроскоп

    х = 0...200 у = 0...100

    0,2 мкм; 1 мкм; 30"

    Высокая точность, удобство контроля резьбовых калибров-пробок, легкая переоснащаемость

    Большие масса и габаритные размеры, настольный прибор

    Измерительные лаборатории, линейноугловые измерения наружных и внутренних размеров

    Оптические приборы для измерения параметров шероховатости поверхности (ГОСТ 9847 - 79) основаны на принципе одновременного преобразования профиля поверхности и предназначены для измерения параметров Rmax; Rz; S по ГОСТ 2789-73. Стандартом устанавливаются следующие типы приборов: ПТС - приборы теневого сечения; ПСС - приборы светового сечения; МОМ - микроскопы однообъективные муаровые; МИИ - микроскопы интерференционные, действие которых основано на двухлучевой интерференции света; МПИ - микроскопы-профилометры интерференционные, действие которых основано на интерференции света с образованием полос равного хроматического порядка.



    Рис. 2.33. :
    а - оптическим методом светового сечения; б - с помощью двухлучевого интерферометра; в - рефлектометрическим методом; 1 - фотоприемник (окуляр); 2 - линза; 3 - объект измерения; 4 - объектив; 5 - осветитель


    Диапазоны измерений параметров шероховатости для указанных типов приборов следующие: ПТС - Rz\ S - 0,2... 1,6 мм; Rmax-40...320 мкм; МИИ - Rz; Rmax - 0,05…0,8 мкм; S - 0,002…0,05 мм; ПСС - Rz\ Rmax - 0,5 ...40 мкм; S - 0,002 ...0,5 мм; МПИ - Rz\ Rmax - 0,05…0,8 мкм; MOM - Rz\ Rmax - 0,8...40 мкм; S- 0,0005... 0,5 мм.


    Оптический метод светового сечения (рис. 2.33, а) позволяет наблюдать в окуляр 1 сильно увеличенный профиль неровностей и, измеряя их с помощью шкал окулярного микрометра, определять Ra и Rz.


    С помощью двухлучевого интерферометра (рис. 2.33, б) измеряют разность длин путей двух пучков света, отраженных от разных участков исследуемой поверхности.


    Оптический прибор, построенный по схеме, изображенной на рис. 2.33, в, реализует рефлектометрический метод измерения и автоматизирует процесс измерения, обеспечивая получение интегрального значения высоты неровностей.

    Из их числа наиболее распространены оптиметры вертикальные и горизонтальные. Эти приборы используют для относительных измерений с применением блоков концевых мер длины.

    Измерительное устройство - трубка оптиметра, основанная на сочетании принципа автоколлимации с качающимся зеркалом.

    В основу принципа автоколлимации положено свойство объектива превращать пучок расходящихся лучей в пучок параллельных лучей, а затем собирать этот пучок, отраженный плоским зеркалом, в том же фокусе объектива.

    Рис. 6.12. Ход лучей в оптической системе: а - при расположении на главной оптической оси; б - при смещении источника света относительно главной оптической оси; в - при отражении от плоскости зеркала, расположенного под углом

    Если источник света О (рис. 6.12, а) находится в фокусе объектива, то луч, совпадающий с главной оптической осью, пройдет объектив без преломления, а остальные лучи после преломления в объективе пройдут параллельно главной оптической оси. Встретив на пути зеркальную плоскость, перпендикулярную к главной оптической оси, лучи отразятся от нее и вновь соберутся в фокусе объектива О.

    Если источник света О расположен не в фокусе объектива, а в фокальной плоскости на расстоянии а от главной оптической оси (рис. 6.12, б ), то параллельные лучи, выйдя из объектива и встретив на своем пути зеркало, расположенное под углом 90° к главной оптической оси, отразятся от него под углом у к этой оси, пройдут через объектив и сойдутся в точке О", симметричной точке О.

    Если же источник света расположен в фокусе объектива, но зеркальная плоскость находится под углом а к главной оптической оси (рис. 6.12, в), то лучи, отразившись, пройдут под углом 2сх к главной оптической оси и, преломившись в объективе, сойдутся в точке Оотстоящей от точки О на расстоянии t = Ftg2a.

    В конструкции трубки оптиметра используют все описанные схемы.

    Рис. 6.13.

    • 1 - шкала; 2 - призма; 3 - зеркало; 4 - призма; 5 - объектив;
    • 6 - зеркало; 7 - неподвижная опора; 8 - измерительный стержень

    Оптическая схема трубки оптиметра показана на рис. 6.13.

    Лучи света от источника направляются осветительным зеркалом 3 и призмой 2 на шкалу 1, на которой нанесено ±100 делений с интервалом с = 0,08 мм, расположенную в общей фокальной плоскости объектива 5 и окуляра. Пройдя через шкалу, лучи попадают в призму 4 и, преломившись под углом 90°, проходят через объектив 5. Выйдя из объектива параллельным пучком, лучи отразятся от зеркала 6 и возвратятся в фокальную плоскость объектива со смещением в горизонтальном направлении относительно главной оптической оси. Горизонтальное смещение используют для того, чтобы наблюдать изображение шкалы отдельно от самой шкалы. Зеркало 6 имеет три точки опоры: две неподвижные 7 и одну подвижную - измерительный стержень 8.

    Перемещение измерительного стержня 8 на величину S вызовет поворот зеркала 6 на угол а, что повлечет за собой поворот отраженных от зеркала лучей на угол 2а. При этом изображение шкалы в общем случае переместится в вертикальном направлении относительно неподвижного индекса на величину t. В оптиметре используется оптический рычаг, малым плечом которого является расстояние а от точки опоры качающего зеркала 6 до оси измерительного стержня 8, большим - фокусное расстояние объектива F. Особенность оптического рычага - передаточное отношение равно удвоенному отношению его плеч:

    где S - перемещение измерительного стержня, равное atgcx.

    У оптиметра F = 200 мм и плечо а = 5 мм. Если принять из-за малости углов tg2a = и tga = а, то

    т.е. при перемещении измерительного стержня на 1 мкм изображение шкалы переместится на интервал деления (с = 80). Величина k = 80 - собственное передаточное отношение рычажно-оптической системы оптиметра. Общее передаточное отношение оптиметра при 12-крат- ном увеличении окуляра

    Предназначен для измерения линейных и угловых размеров методом непосредственной оценки.

    В современной практике измерения чаще всего применяют микроскоп малой модели типа ИТ и большой модели БМИ.


    Рис. 6.14.

    • 1 - основание; 2 - микрометрический винт поперечного перемещения; 3 - винт поворота стола; 4 - рамка с центрами; 5 - центр; 6 - тубус;
    • 7 - съемная окулярная головка; 8 - винт (маховичок); 9 - колонка; 10 - стопорный винт; 11 - ось вращения колонки; 12 - осветительное устройство; 13 - винт наклона колонки; 14 - микрометрический винт продольного перемещения; 15 - стол; 16 - рукоятка

    Видимый интервал деления с" собственно составит 960 мкм. Следовательно, цена деления оптиметра

    Инструментальный микроскоп малой модели (рис. 6.14) состоит из основания прибора 1, колонки 9, съемной окулярной головки 7, тубуса 6, передвигающегося вверх и вниз по колонке 9, стола 15, имеющего поперечное и продольное перемещение с помощью микрометрических винтов 2 и 14 соответственно и осветительного устройства 12.

    Колонка 9 может поворачиваться вокруг горизонтальной оси 11 с помощью винтов 13, отклоняясь от вертикального положения в обе стороны на 10°. Грубое перемещение тубуса по колонке проводится от руки. Он фиксируется в любом положении стопорным винтом 10. Для точной установки по высоте служит маховичок 8.

    Продольное и поперечное перемещение стола отсчитывают по шкалам микрометрического винта, аналогичного микрометру. Предел измерения по микровинтам - 25 мм. Предел измерения в продольном направлении можно увеличить, перемещая стол рукояткой 16, дополнительно на 50 мм за счет блока концевых мер, устанавливаемого между специальными упорами. Пределы измерения по угловой шкале 0-360°.

    На столе микроскопа помещается рамка 4 с центрами 5 для установки цилиндрических деталей с центровыми отверстиями. Для измерения бесцентровых деталей рамка снимается, и тогда применяется V-образная призма. Плоские детали устанавливают непосредственно на столе, который может в незначительных пределах поворачиваться вокруг оси винтом 3 в основном при настройке прибора.

    В инструментальном микроскопе применяется съемная универсальная окулярная головка 7, имеющая два окуляра - визуальный Б и отсчета угловых величин А. В окуляре Б наблюдаются изображение теневого контура измеряемого объекта и штриховая сетка, нанесенная на стеклянном диске, который вращается при помощи специального маховика. Угол поворота штриховой сетки отсчитывается по шкалам (видимым в окуляре А): подвижной градусной и неподвижной минутной с ценой деления 1 минута.

    Интерферометры, основанные на использовании явления интерференции световых волн, подразделяют на контактные и бесконтактные, вертикальные и горизонтальные.

    Контактные интерферометры выпускают с переменной ценой деления от 0,05 до 0,2 мкм. Перед измерением прибор настраивают на цену деления г. Для этого задают цену деления произвольным количеством полос К в монохроматическом свете и определяют количество делений шкалы т, в которые надо уложить К полос, чтобы получить заданную цену деления. Рекомендуется при цене деления 0,05; 0,1 и 0,2 мкм выбирать число К = 8; 16 и 32 соответственно:

    где X - длина световой волны (обычно замаркирована на интерферометре).

    Применяют интерферометры в основном для поверки концевых мер и для точных измерений.

    Рис. 6.15.

    • 1 - лампа; 2 - конденсор; 3 - диафрагма; 4 - светофильтр;
    • 5 - зеркало; 6 - пластина; 7 - объектив; 8 - полость сетки;
    • 9 и 10 - окуляр; 11 - компесатор; 12 - зеркало

    Оптическая схема трубки интерферометра показана на рис. 6.15. Свет от лампы 1 направляют конденсором 2 через диафрагму 3 на полупрозрачную разделительную пластину 6. Часть света пройдет через пластину 6, компенсатор 11 на зеркало 12 и, отразившись от зеркала, вернется снова на пластину 6. Другая часть пучка света направится на зеркало 5 и после отражения тоже возвратится к пластине. Встретившись на пластине 6, обе части пучка света интерферируют при небольшой разности хода. Объектив 7 проецирует в полость сетки 8 интерференционные полосы, которые вместе с нанесенной на сетке шкалой наблюдаются через систему окуляра 9 и 10. При включении светофильтра 4 наблюдается интерференционная картина, черная полоса которой служит указателем при отсчете по шкале.

    Оптические измерительные приборы чрезвычайно разнообразны. По количеству типов оптических приборов их можно сопоставить с электроизмерительными. На самом деле, очень многие приборы из других видов измерения - из механики, из теплофизики, из физико-химии - в качестве оконечного каскада или в качестве первичного датчика имеют те или иные оптические детали.

    С самого начала следует определить, что в дальнейшем изложении будет считаться оптическим прибором. Вообще оптическим считается метод или прибор, регистрирующий электромагнитное излучение, видимое человеческим глазом, т. е. электромагнитные колебания с длинами волн от 760 нм до 350 нм. Однако развитие науки о свете привело к тому, что под оптическим и задачам и стали понимать измерение в более длинноволновой области - инфракрасное излучение - и в более коротковолновой области - ультрафиолетовое излучение. Соответственно, расширилось число методов и приборов, которые являются прерогативой оптиков. Чтобы убедиться в этом, достаточно вспомнить, что в оптическом приборостроении и в оптических исследованиях последних десятилетий оптическая наука прирастала в основном крайними, т. е. инфракрасной (ИК) и ультрафиолетовой (УФ) областями спектра. Поэтому сейчас под оптическими приборами и методами подразумевают практически все, что «родом» из видимого человеческим глазом электромагнитного излучения.

    Ограничиваясь тематикой и объемом изложения, мы будем полагать, что читатель знаком с основами физической и геометрической оптики. Во всяком случае, здесь нет возможности излагать суть таких явлений, как дифракция, интерференция, поляризация и др., равно как останавливаться на основных законах оптики, например на фотоэффекте, принципах работы лазеров, на законах излучения, на синхротронном излучении и т. д. Для более подробного знакомства с физикой оптических явлений здесь даны ссылки на учебный материал, специально посвященный данному конкретному разделу оптики.

    Прежде чем перейти к конкретному изложению принципов действия оптических приборов, имеет смысл раскатегорировать их по измеряемым физическим величинам или по области применения, что зачастую является одним и тем же. С такой точки зрения оптические измерительные приборы можно разделить на классы, например так, как показано на схеме рис. 8.1
    .

    Фотометрические оптические приборы - это класс оптики для изменения световых потоков и величин, непосредственно связанных со световыми потоками: освещенности, яркости, светимости и силы света. Фотометры целесообразно разделять на традиционно оптические, измеряемые характеристики в которых имеют чувствительность, соответствующую чувствительности человеческого глаза, и так называемые фотометры энергетических фотометрических величин, т. е. те же характеристики безотносительно к чувствительности глаза человека. Естественно, что в энергетических фотометрах величины выражаются не в люменах, люксах, нитах, а в единицах механических:

    Спектральные оптические приборы - огромный класс оптической техники, для которого общим является разложение электромагнитного излучения в спектр по длинам волн. Существуют спектроскопы - визуальные приборы, монохроматоры - приборы, выделяющие излучения на какой-либо фиксированной длине волны, полихроматоры, выделяющие излучение на нескольких длинах волн, спектрографы - регистрирующие весь спектр монохроматического излучения. Если в приборе кроме разложения излучения в спектр имеется возможность измерения каких-либо энергетических характеристик электромагнитного излучения, то такой прибор называется спектрофотометром или квантометром.

    Интерферометрами называют приборы, в которых основной измеряемой характеристикой является не амплитуда световой волны и связанная с ней энергия, а фаза электромагнитного колебания. Именно такой подход позволил создать самые точные на данный момент средства измерения, реально позволяющие измерять величины с погрешностями в 11-12 знаке. Именно поэтому интерферометры применяются в основном для решения задач, требующих от приборов предельно высокой точности, например, в эталонах, в обслуживании уникальных научных программ, в реализации сверхчувствительных методов анализа состава вещества и т.п.

    Другие классы оптических приборов, представленные на схеме рис. 8.1 не так обширны, как фотометры и спектрометры. Тем не менее они выделены вследствие того, что у них определяющим является специфическое физическое явление.

    В поляриметрах используется такое волновое свойство света, как поляризация, т. е. определенная ориентация колебаний электромагнитной волны относительно направления распространения. Многие вещества обладают свойствами изменять направление поляризации. На этом принципе работают не только преобразователи для измерения магнитных величин, но и некоторые приборы для анализа состава веществ и материалов, например сахариметры.

    Приборы для измерения показателя преломления твердых тел, жидкостей и газов. В них используется изменение направления пучка света на границе раздела двух сред. Эти приборы используются в качестве индикаторов в хроматографах, в многочисленных метеорологических приборах специального назначения, в газовом анализе и т. д.

    Приборы для угловых измерений - в большинстве своем представляют собой зрительные трубы или лазеры, оптическая ось которых снабжена отсчетным угловым лимбом. Таким прибором можно измерять углы, последовательно наводя оптическую ось на два раздельных объекта. Сюда же можно отнести и оптические дальномеры, использующие измерения углов наблюдения одного и того же объекта двумя зрительными трубами. Гониометры широко применяются в топографии, в военной технике, в геодезических работах.

    Измерительные микроскопы представляют собой приборы для увеличения видимых размеров (или углов наблюдения) различных объектов и измерения размеров увеличенных деталей. В разделе «Механические измерения» рассматривались два типа такой измерительной техники: это измеритель длин ИЗА и микроскоп Линника - прибор для измерения шероховатости поверхностей. Наиболее массовыми приборами такого типа являются обычные микроскопы, снабженные окуляр-микрометром. Это позволяет оценивать размеры объема при непосредственном наблюдении его через микроскоп. Такими приборами широко пользуются врачи, биологи, ботаники и вообще все специалисты, работающие с небольшими объектами.

    Приборы для измерения собственного теплового излучения тел называются пирометрами (от слова «пиро» - огонь). В этих приборах используются законы излучения нагретых тел - закон Планка, закон Стефана-Больцмана, закон Вина, закон Релея-Джинса. Этот класс приборов рассмотрен нами в разделе о температурных измерениях, где пирометры рассматриваются как средства неконтактного измерения температуры.

    Термин «фотометрия» образован от двух греческих слов: «фос» - свет и «метрео» - измеряю. В измерительных приборах, регистрирующих область спектра, видимую человеческим глазом (λ = 350 - 760 нм) важно не только измерить энергетические характеристики, но и изготовить прибор таким образом, чтобы его чувствительность к излучению соответствовала бы чувствительности человеческого глаза. Такие приборы измеряют оптические величины в оптических единицах, основной из которых является кандела (свеча). Сила света определяется как энергия потока, видимого человеческим глазом, т. е. механическая энергия, умноженная на видность глаза, распространяющая в единичном телесном угле, т. е.

    (8.1)

    Если сила света выражена в канделах, а телесный угол в стерадианах, то световой поток выразится в люменах.

    Освещенность какой-либо поверхности, перпендикулярной к направлению распространения света, есть поверхностная плотность светового потока, т. е.

    Связь освещенности и силы света дается фундаментальным законом фотометрии, гласящем, что освещенность от точечного источника изменяется обратно пропорционально квадрату расстояния от источника до освещаемой поверхности, т. е.

    (8.3)

    где φ - угол между нормалью к поверхности и направлением распределения света. Освещенность выражается в люменах. Если поставлена задача охарактеризовать фотометрические параметры самосветящегося объекта: нити накаливания лампы, экрана монитора, колбы люминесцентной лампы и т. д., измерять следует величину, называемую светимостью:

    где dS - элемент светящейся поверхности. Светимость в оптических единицах выражается в люменах с квадратного метра (лм/м 2).

    Еще одной распространенной оптической физической величиной, измеряемой на практике, является яркость. Яркость определяется для светящегося объекта как сила света с единицы поверхности, перпендикулярной лучу:


    Рис. 8.2. К определению яркости: а) самосветящаяся поверхность; б) поверхность, освещенная сторонним источником света

    Для поверхности, освещенной сторонним источником света, яркость определяется как отношение освещенности поверхности к телесному углу, опирающемуся на эту поверхность, и имеющему вершину в точке наблюдения:

    Еще одно определение яркости относится к лучу света безотносительно к тому, является он исходящим от самосветящейся поверхности или падает на какую-либо поверхность. Яркость элементарного луча определяется как освещенность, которую он создает на перпендикулярной к нему поверхности в единичном телесном угле, который он заполняет:

    (8.7)

    В тех случаях, когда создаются приборы, работающие в инфракрасном или в ультрафиолетовом диапазонах, вместо оптических единиц, как уже указывалось, используются механические единицы, т. е. мощность измеряется в ваттах, энергетическая освещенность - в ваттах на квадратный метр, энергетическая сила света - в ваттах на стерадиан, энергетическая яркость - в ваттах на метр квадратный на стерадиан. В главе «Метрология» указано, что связь между относительными фотометрическими единицами осуществляется использованием понятия механического эквивалента света и функции видности человеческого глаза. Напомним, что механический эквивалент света есть мощность светового потока на длине волны 555 мкм, равная 1 Ватту механической энергии. В оптических единицах эта мощность равна 683 люмена, т. е.

    (8.8)

    В приборах для измерения силы света - свечемерах - используется закон измерения освещенности в зависимости от расстояния. В этом случае сила света какого-либо источника измеряется сравнением (компарированием освещенности, создаваемой этим источником с освещенностью, создаваемой источником, с известной силой света I,). Схема подобного прибора дана на рис. 8.3.

    Перемещением экрана и лампы добиваются равенства сигналов с фотоприемника при освещении обеими лампами. Затем измеряют расстояние r 1 и r 2 , соответствующие этому положению. Сила света источника I 2 находится из очевидного равенства:

    (8.9)

    Существует достаточное количество различных реализаций этого метода как по компарированию ламп с различным спектральным составом излучения, так и с различными интенсивностями. Вместо фотоприемника часто используют какое-либо визуальное устройство, и равенство освещенностей фиксируют без измерений фототоков.

    Тот же самый принцип в отношении измерения силы света мощных источников или при большом расстоянии от источника света до фотоприемника реализован в так называемом телеметрическом методе. Сущность этого метода основана на выделении и измерении светового потока ΔФ, распространяющегося от источника в пределах малого телесного угла Δω и определения таким образом силы света в соответствующем направлении. Рисунок 8.4
    поясняет сущность телеметрического метода.

    Излучение источника И, силу света которого надо определить, падает на положительную линзу Л, оптическая ось которой совпадает с направлением измеряемой силы света. В фокальной плоскости F устанавливается диафрагма D с площадью отверстия S, равной δ. Телесный угол, в пределах которого лучи, падающие на линзу Л, достигнут фотоэлемента, равен Δω=δ/f 2 , где f - фокусное расстояние линзы. Фототек в цепи фотоэлемента должен быть пропорционален световому потоку ΔФ, используемому в пределах постоянного для данного прибора телесного угла Δω. В этом случае фототек равен

    (8.10)

    где К - постоянный коэффициент, I - искомая сила света. Коэффициент К определяется при градуировке, и шкала электроизмерительного прибора комбинируется непосредственно в единицах силы света - в канделах или в ваттах на стерадиан.

    Для измерения светового потока проводят измерения освещенности внутренней поверхности белого матового шара. Если в фотометрическом шаре между источником света, поток от которого нужно измерить, и фотоприемником установить экран Э, то освещенность в точке расположения фотоприемника пропорциональна полному световому потоку:

    (8.11)

    где ρ - коэффициент отражения внутренней поверхности шара; r - радиус шара; а - фотометрическая константа шара - коэффициент пропорциональности между величиной светового потока от источника и освещенностью поверхности фотоприемника. В большинстве практических случаев коэффициент а определяется экспериментально измерениями светового потока источника с известными значениями полного светового потока.

    Измерители освещенности - люксметры - являются наиболее массовыми оптическими приборами, используемыми на практике. Именно этими приборами контролируется уровень освещенности во всех случаях - в помещении, на улице, при выполнении каких-либо технологических измерений и т.д.

    Люксметры по принципиальной схеме являются наиболее простыми из всех фотометрических приборов. Фотоэлектрические люксметры состоят, как правило, из фотоэлемента и чувствительного электроизмерительного прибора. Необходимым условием правильности показаний люксметра является соответствие спектральной чувствительности фотоприемника функции видности человеческого глаза, т. е. максимальная чувствительность должна быть в желто-зеленой области со спадом в ультрафиолетовую (до 380 нм) область и в инфракрасную (более 760 нм) область. Поскольку площадь фотоприемника строго фиксирована, сигнал с него пропорционален освещенности, и шкала прибора, соответственно, может быть проградуирована в люксах.

    Инфракрасного излучения. Поскольку связь общей энергии теплового излучения с температурой дается законом Стефана-Больцмана, показания спектрофотометров зависят от того, какой источник света освещает данный объект. В большинстве случаев приборы градуируются для освещения лампами накаливания, т. н. Источник типа А. Если объект освещен другими типами источников, например люминесцентными лампами или ртутными дуговыми лампами, то показания по шкале люксметра можно исправить с помощью поправочного коэффициента N, на который нужно умножить результат, чтобы найти правильное значение измеряемой освещенности. Значения поправочного коэффициента N для наиболее часто используемых источников света приведены в табл. 8.1.

    Таблица 8.1

    Поправочные коэффициенты для измерения
    энергетических потоков источников света
    с различными цветовыми температурами

    Цветовая температура источника света, К 2360 2856 3100 3250 3400 4800 5800
    Поправочный коэффициент, N 1,003 1,00 0,99 0,975 0,973 0,843 0,78

    Для измерения яркости в соответствии с 8.5 - 8.7 необходимо измерить энергию светового пучка, ограниченного двумя диафрагмами. Для реализации этого яркомер содержит, как правило, ахроматический объектив, проектирующий изображение объекта в плоскость диафрагмы D, за которой устанавливают фотоприемник. Схема яркомера дана на рис. 8.5.

    Прибор, построенный по такой схеме, реагирует на световой поток, исходящий с поверхности определяемого размера dS под определенным углом dω. Следовательно, регистрируемый фототек будет пропорционален яркости объекта, и прибор может быть проградуирован в единицах яркости. На практике яркомеры имеют визирное устройство, позволяющее видеть глазом тот участок поверхности, яркость которого измеряется.

    При измерении яркости протяженных самосветящихся объектов можно воспользоваться прибором для измерения освещенности - люксметром,- расположив его непосредственно на светящейся поверхности. В этом случае фотоприемник соберет все излучение объекта, исходящее в телесном угле в 2π стерадиан, и яркость самосветящейся поверхности будет отличаться от освещенности на 2π, т. е.

    Этим способом часто пользуются на практике. Существуют также промежуточные приборы, проградуированные в единицах яркости, хотя по своей схеме они идентичны обычным люксметрам.