На волне интереса к возобновляемым источникам энергии в мире то тут, то там возводятся плотины гидроэлектростанций. некоторые из них поражают воображение своей грандиозностью. Но, отдавая должное смелым инженерным решениям, следует помнить, что удерживаемые плотинами огромные массы воды таят в себе страшную разрушительную мощь

Строго говоря, строительство плотин и дамб не обязательно имеет отношение к гидроэнергетике. Московские плотины просто поднимают уровень некогда почти обмелевшей реки, а, например, Краснодарское водохранилище на реке Кубань создано для нужд ирригации. Но все же подавляющее большинство крупных гидросооружений в России связано с энергетической отраслью. Со времен утверждения в 1921 году IX Всероссийским съездом Советов плана ГОЭЛРО наша страна активно использует энергию малых и великих рек.

Коварное дно


Если не вдаваться в подробности классификации, плотины электростанций делятся в основном на гравитационные и арочные. Гравитационная плотина - как правило, имеющая треугольное поперечное сечение - строится из грунта, камня или бетонных блоков. Из самого термина «гравитационная» видно, что такая плотина удерживает массу воды за счет своей тяжести, - течение реки не в силах сдвинуть эту громадину с места, и вода начинает подниматься. Арочные плотины используются в горной местности. За счет своей формы (по сути это фрагмент купола, выгнутого в сторону напирающей воды) такая плотина передает нагрузку на борта каньона. Арочная плотина сложнее в строительстве, но экономичнее в смысле расхода материалов. При высоте 100 м гравитационная плотина должна иметь основание шириной 70-80 м, а у арочной плотины такой же высоты ширина основания составит всего около 5 м. Есть также плотины смешанного гравитационно-арочного типа (пример - плотина крупнейшей в России Саяно-Шушенской ГЭС) и контрфорсного типа.
Чтобы плотина выполняла свою задачу и не преподносила неприятных сюрпризов, требуется тщательное геологическое исследование створов реки в месте, где предполагается строительство ГЭС. История знает случаи, когда плотину ставили на дно, в котором находились карстовые полости. После наполнения водохранилища вода просачивалась в эти полости, а затем находила выход в нижнем бьефе. Водохранилище начинало сливаться, и, чтобы не допустить этого, в карстовые пустоты пришлось закачивать бетон, объем которого был примерно равен объему самой плотины.
Идеальным для строительства плотины является скальное дно, менее предпочтительна скользкая глинистая почва. В последнем случае при недостаточном весе плотины она может просто «уехать» по течению.


Вода дырочку найдет


Плотина ГЭС - структурно сложное сооружение. В ее состав входят глухие плотины - через гребень которых вода не переливается (или, во всяком случае, не должна переливаться); станционные плотины, через которые вода из водохранилища поступает в камеры с турбинами, вращающими валы электрогенераторов; и водосливные плотины, через которые сбрасывается вода для регулирования уровня воды в верхнем бьефе (в водохранилище).
Система водосброса - один из ключевых элементов гидроузла. Уровень воды в перекрытой плотиной реке может значительно колебаться в зависимости от времени года и климатических факторов, таких как таяние снега и льда в верховьях или ливневые дожди. Неконтролируемый сброс воды из верхнего бьефа может привести к разрушению всей конструкции.
Пожалуй, большинство драматических событий, связанных с разрушением плотин, вызвано именно переполнением верхнего бьефа из-за попадания туда большого количества талых или ливневых вод. Последний подобный случай произошел в марте этого года в Индонезии, когда построенная еще голландскими колониальными властями в 1933 году дамба не выдержала натиска тропических ливней. Вырвавшаяся на свободу вода стала причиной гибели около ста человек. Одна из самых масштабных аварий на гидротехнических сооружениях произошла в США в 1976 году. Сначала в земляной дамбе, перекрывавшей реку Тетон (штат Айдахо), появилась небольшая течь. Поначалу на нее не обратили особого внимания, затем, когда течь стала заметнее, ее попытались ликвидировать с помощью строительной техники. В конце концов бульдозеры пришлось бросить, чтобы спасти человеческие жизни. Прорвав наконец земляную плотину, вода размыла ее за считаные минуты.

Хищные моря

Водохранилища - пожалуй, главная «ахиллесова пята» гидроэнергетики. И именно вокруг них ведутся непрекращающиеся дискуссии между энергетиками и экологами. Очевидно, что появившиеся в результате строительства гидроузлов искусственные «моря» нельзя считать лишь неизбежным злом. Водохранилища имеют большое значение для организации судоходства и рыбопромысла, служат резервуарами питьевой воды и выполняют рекреационную функцию (как, например, каскад водохранилищ водораздельного бьефа канала им. Москвы). Часто они помогают решить проблемы паводковых наводнений в районах, лежащих ниже по течению перекрытой реки. Однако цена этому - превращение суши в дно, серьезные перемены в экологической ситуации и даже изменения климата. Нередко затапливаются леса и анаэробное гниение на отмелях больших масс растительной органики приводит к выбросу в атмосферу метана - одного из «парниковых газов». Этот факт несколько портит имидж гидроэнергетики как альтернативы сжиганию ископаемого топлива.

Дитя первых пятилеток - гигантское Рыбинское водохранилище - поглотило, как известно, огромную издревле населенную территорию в самом центре Европейской России. «Море» заполнило собой Молго-Шекснинскую низменность, образовавшуюся в результате таяния ледника. Под водой оказались сотни сел и целый город Молога, церкви, монастыри, кладбища и даже три сотни жителей, не пожелавших покинуть свою «малую родину». «Лес рубят - щепки летят» - таков был один из основополагающих принципов сталинской политики. В более гуманные времена, при строительстве других водохранилищ Волжского каскада, рукотворным морям уже не давали разливаться бесконтрольно, отдавая их береговую линию на откуп рельефу. Однако единственный способ остановить разлив воды - обваловка, то есть сооружение по установленным границам водохранилища земляных дамб. На практике это означает, что находящиеся рядом с дамбой дома, дороги или промышленные объекты оказываются ниже уровня водоема и обеспечение их безопасности становится отдельной проблемой. Речь идет не только о поддержании дамб в исправном техническом состоянии, но и об ограждении этих гидросооружений от, так сказать, человеческого фактора. Сейчас вдоль дамб некоторых водохранилищ Волжского каскада ведется милицейское патрулирование и возводятся заборы.


Плотина и вечность

Нельзя забывать и еще об одной проблеме, связанной с появлением водохранилищ. Под давлением огромной массы влага просачивается в окружающий грунт, поднимая уровень грунтовых вод. Иногда этим можно воспользоваться: например, в районах, где регулярно пересыхают колодцы, запруживание местной речки поможет их наполнить. Однако, когда речь идет о макромасштабах, подъем грунтовых вод приводит к заболачиванию обширных территорий и другим малоприятным последствиям. В частности, одним из аргументов экологов, выступающих против строительства Эвенкийской ГЭС на реке Нижняя Тунгуска, является вероятная инфильтрация воды в полости, оставшиеся от проводившихся в этом районе подземных ядерных взрывов. В этом случае может возникнуть опасность попадания радиоактивных материалов в Нижнюю Тунгуску и Енисей. Создание водохранилищ также может привести к затоплению подземных коммуникаций, подвалов зданий и шахт на прилегающей территории. Разумеется, при проектировании гидроузлов подобные побочные эффекты стараются просчитывать, однако действие водной стихии не может быть предсказуемым на все 100%.

У крупных гидросоружений есть одна уникальная особенность. В отличие от шахты или карьера, их нельзя забросить, отдать на произвол сил природы. Либо плотину надо вечно поддерживать в рабочем состоянии (что практически вряд ли выполнимо), либо по истечении определенного срока гидроузел должен быть демонтирован, а водохранилище слито или превращено в замкнутый водоем. Только так можно избежать катастрофических последствий стихийного разрушения. В этом, кстати, просматриваются общие черты атомной энергетики и гидроэнергетики. Стоимость вывода из эксплуатации АЭС сравнима с затратами на ее постройку. То же самое касается и гидроэлектростанций. Сооруженные в СССР плотины ГЭС рассчитаны на работу в течение ста лет. С одной стороны, век - это немало, но с другой - некоторые гидроэлектростанции, например Жигулевская ГЭС на Волге, уже выработали около половины срока, а то и больше. Таким образом, вопрос о том, что делать с отработавшими свое гидросооружениями и во сколько обойдется их демонтаж или капитальная реконструкция, встанет уже перед ныне живущими поколениями.
Очевидно, что работа с огромными массами воды требует грамотных инженерных решений, технологической дисциплины и ответственности. К счастью, у нас в России - в стране, где ГЭС вносят огромный вклад в энергетическое хозяйство, - есть и технологии, и высококлассные специалисты, способные развивать гидроэнергетику на принципах эффективности, экологичности и безопасности.




На волне интереса к возобновляемым источникам энергии в мире то тут, то там возводятся плотины гидроэлектростанций. некоторые из них поражают воображение своей грандиозностью. Но, отдавая должное смелым инженерным решениям, следует помнить, что удерживаемые плотинами огромные массы воды таят в себе страшную разрушительную мощь

Редакция ПМ


Считаясь одним из экологически чистых способов производства энергии, гидроэнергетика оказывает при этом серьезное воздействие на природу. И у этого воздействия есть как положительные, так и отрицательные стороны. На фото — плотина Чиркейской ГЭС в Дагестане


Ингури ГЭС Плотина на грузинской реке Ингури может считаться гордостью советской гидроэнергетики: это самая высокая в мире бетонная плотина арочного типа. Ее высота составляет 272 м. Строительство плотины было начато еще в 1961 году, а полностью завершено лишь в 1987-м. В настоящее время Ингури ГЭС поделена между Грузией и недавно признанной Россией Абхазией, которой принадлежит 40% вырабатываемой энергии


Зейская ГЭС Плотина, воздвигнутая на реке Зея в Амурской области (1965−1980), относится к уникальному для России массивно-контрфорсному типу. Она разделила реку на два не связанных друг с другом бьефа — конструкцией не предусмотрены ни шлюзы, ни рыбоподъемники. Водохранилище имеет большое противопаводковое значение.


Бурейская ГЭС Возводится на реке Бурея в Амурской области. Строительство этой ГЭС началось еще в 1978 году, однако работы на ней продолжаются и по сей день. С конца 1980-х до конца 1990-х годов строительство было фактически законсервировано. Проектом на станции предусмотрено шесть гидроагрегатов, из которых два уже введены в строй, а третий должен заработать в этом году. Плотина относится к гравитационному типу и имеет длину 736 м при высоте 140 м. Водохранилищем затоплены значительные участки леса, в основном в Хабаровском крае


Америка: плотина Гувера Названная в честь президента Герберта Гувера самая высокая в США плотина гравитационно-арочного типа перекрыла реку Колорадо в 1936 году. Цели строительства — гидроэнергетика, орошение полей, улучшение условий судоходства, борьба с наводнениями


Америка: Панамский канал Одно из самых известных гидросооружений в мире — Панамский канал (завершен в 1914 году). Суда проводят через шлюзы канала с помощью локомотивов-буксиров, которые движутся по зубчатым рельсам, проложенным вдоль шлюза


Америка: «дыра славы» Арочная плотина Monticello Dam, перекрывающая калифорнийскую речку Пьюта-Крик, ничем особо не знаменита, кроме «дыры славы». Такое странное название носит нерегулируемый водослив, выполненный в виде бетонной воронки. Когда уровень в водохранилище Берриесса превышает проектный, вода переливается через края воронки, создавая красивое, но немного жутковатое зрелище


Парад гигантов: ГЭС «Итайпу» Одна из крупнейших в мире плотин перегородила реку Парана вблизи бразильско-парагвайской границы. Для строительства плотины, сделанной из земли, камня и бетона, в скалах был пробит 150-метровый канал, по которому воду реки отвели в строну от русла. После высыхания русла в выбранном створе в 1979 году началось возведение плотины. Ее общая длина составляет 7235 м.

Строго говоря, строительство плотин и дамб не обязательно имеет отношение к гидроэнергетике. Московские плотины просто поднимают уровень некогда почти обмелевшей реки, а, например, Краснодарское водохранилище на реке Кубань создано для нужд ирригации. Но все же подавляющее большинство крупных гидросооружений в России связано с энергетической отраслью. Со времен утверждения в 1921 году IX Всероссийским съездом Советов плана ГОЭЛРО наша страна активно использует энергию малых и великих рек.

Коварное дно

Если не вдаваться в подробности классификации, плотины электростанций делятся в основном на гравитационные и арочные. Гравитационная плотина — как правило, имеющая треугольное поперечное сечение — строится из грунта, камня или бетонных блоков. Из самого термина «гравитационная» видно, что такая плотина удерживает массу воды за счет своей тяжести, — течение реки не в силах сдвинуть эту громадину с места, и вода начинает подниматься. Арочные плотины используются в горной местности. За счет своей формы (по сути это фрагмент купола, выгнутого в сторону напирающей воды) такая плотина передает нагрузку на борта каньона. Арочная плотина сложнее в строительстве, но экономичнее в смысле расхода материалов. При высоте 100 м гравитационная плотина должна иметь основание шириной 70−80 м, а у арочной плотины такой же высоты ширина основания составит всего около 5 м. Есть также плотины смешанного гравитационно-арочного типа (пример — плотина крупнейшей в России Саяно-Шушенской ГЭС) и контрфорсного типа.

Чтобы плотина выполняла свою задачу и не преподносила неприятных сюрпризов, требуется тщательное геологическое исследование створов реки в месте, где предполагается строительство ГЭС. История знает случаи, когда плотину ставили на дно, в котором находились карстовые полости. После наполнения водохранилища вода просачивалась в эти полости, а затем находила выход в нижнем бьефе. Водохранилище начинало сливаться, и, чтобы не допустить этого, в карстовые пустоты пришлось закачивать бетон, объем которого был примерно равен объему самой плотины.

Идеальным для строительства плотины является скальное дно, менее предпочтительна скользкая глинистая почва. В последнем случае при недостаточном весе плотины она может просто «уехать» по течению.

Вода дырочку найдет

Плотина ГЭС — структурно сложное сооружение. В ее состав входят глухие плотины — через гребень которых вода не переливается (или, во всяком случае, не должна переливаться); станционные плотины, через которые вода из водохранилища поступает в камеры с турбинами, вращающими валы электрогенераторов; и водосливные плотины, через которые сбрасывается вода для регулирования уровня воды в верхнем бьефе (в водохранилище).

Система водосброса — один из ключевых элементов гидроузла. Уровень воды в перекрытой плотиной реке может значительно колебаться в зависимости от времени года и климатических факторов, таких как таяние снега и льда в верховьях или ливневые дожди. Неконтролируемый сброс воды из верхнего бьефа может привести к разрушению всей конструкции.

Пожалуй, большинство драматических событий, связанных с разрушением плотин, вызвано именно переполнением верхнего бьефа из-за попадания туда большого количества талых или ливневых вод. Последний подобный случай произошел в марте этого года в Индонезии, когда построенная еще голландскими колониальными властями в 1933 году дамба не выдержала натиска тропических ливней. Вырвавшаяся на свободу вода стала причиной гибели около ста человек. Одна из самых масштабных аварий на гидротехнических сооружениях произошла в США в 1976 году. Сначала в земляной дамбе, перекрывавшей реку Тетон (штат Айдахо), появилась небольшая течь. Поначалу на нее не обратили особого внимания, затем, когда течь стала заметнее, ее попытались ликвидировать с помощью строительной техники. В конце концов бульдозеры пришлось бросить, чтобы спасти человеческие жизни. Прорвав наконец земляную плотину, вода размыла ее за считаные минуты.

Хищные моря

Водохранилища — пожалуй, главная «ахиллесова пята» гидроэнергетики. И именно вокруг них ведутся непрекращающиеся дискуссии между энергетиками и экологами. Очевидно, что появившиеся в результате строительства гидроузлов искусственные «моря» нельзя считать лишь неизбежным злом. Водохранилища имеют большое значение для организации судоходства и рыбопромысла, служат резервуарами питьевой воды и выполняют рекреационную функцию (как, например, каскад водохранилищ водораздельного бьефа канала им. Москвы). Часто они помогают решить проблемы паводковых наводнений в районах, лежащих ниже по течению перекрытой реки. Однако цена этому — превращение суши в дно, серьезные перемены в экологической ситуации и даже изменения климата. Нередко затапливаются леса и анаэробное гниение на отмелях больших масс растительной органики приводит к выбросу в атмосферу метана — одного из «парниковых газов». Этот факт несколько портит имидж гидроэнергетики как альтернативы сжиганию ископаемого топлива.

Дитя первых пятилеток — гигантское Рыбинское водохранилище — поглотило, как известно, огромную издревле населенную территорию в самом центре Европейской России. «Море» заполнило собой Молго-Шекснинскую низменность, образовавшуюся в результате таяния ледника. Под водой оказались сотни сел и целый город Молога, церкви, монастыри, кладбища и даже три сотни жителей, не пожелавших покинуть свою «малую родину». «Лес рубят — щепки летят» — таков был один из основополагающих принципов сталинской политики. В более гуманные времена, при строительстве других водохранилищ Волжского каскада, рукотворным морям уже не давали разливаться бесконтрольно, отдавая их береговую линию на откуп рельефу. Однако единственный способ остановить разлив воды — обваловка, то есть сооружение по установленным границам водохранилища земляных дамб. На практике это означает, что находящиеся рядом с дамбой дома, дороги или промышленные объекты оказываются ниже уровня водоема и обеспечение их безопасности становится отдельной проблемой. Речь идет не только о поддержании дамб в исправном техническом состоянии, но и об ограждении этих гидросооружений от, так сказать, человеческого фактора. Сейчас вдоль дамб некоторых водохранилищ Волжского каскада ведется милицейское патрулирование и возводятся заборы.

Плотина и вечность

Нельзя забывать и еще об одной проблеме, связанной с появлением водохранилищ. Под давлением огромной массы влага просачивается в окружающий грунт, поднимая уровень грунтовых вод. Иногда этим можно воспользоваться: например, в районах, где регулярно пересыхают колодцы, запруживание местной речки поможет их наполнить. Однако, когда речь идет о макромасштабах, подъем грунтовых вод приводит к заболачиванию обширных территорий и другим малоприятным последствиям. В частности, одним из аргументов экологов, выступающих против строительства Эвенкийской ГЭС на реке Нижняя Тунгуска, является вероятная инфильтрация воды в полости, оставшиеся от проводившихся в этом районе подземных ядерных взрывов. В этом случае может возникнуть опасность попадания радиоактивных материалов в Нижнюю Тунгуску и Енисей. Создание водохранилищ также может привести к затоплению подземных коммуникаций, подвалов зданий и шахт на прилегающей территории. Разумеется, при проектировании гидроузлов подобные побочные эффекты стараются просчитывать, однако действие водной стихии не может быть предсказуемым на все 100%.

У крупных гидросоружений есть одна уникальная особенность. В отличие от шахты или карьера, их нельзя забросить, отдать на произвол сил природы. Либо плотину надо вечно поддерживать в рабочем состоянии (что практически вряд ли выполнимо), либо по истечении определенного срока гидроузел должен быть демонтирован, а водохранилище слито или превращено в замкнутый водоем. Только так можно избежать катастрофических последствий стихийного разрушения. В этом, кстати, просматриваются общие черты атомной энергетики и гидроэнергетики. Стоимость вывода из эксплуатации АЭС сравнима с затратами на ее постройку. То же самое касается и гидроэлектростанций. Сооруженные в СССР плотины ГЭС рассчитаны на работу в течение ста лет. С одной стороны, век — это немало, но с другой — некоторые гидроэлектростанции, например Жигулевская ГЭС на Волге, уже выработали около половины срока, а то и больше. Таким образом, вопрос о том, что делать с отработавшими свое гидросооружениями и во сколько обойдется их демонтаж или капитальная реконструкция, встанет уже перед ныне живущими поколениями.

Очевидно, что работа с огромными массами воды требует грамотных инженерных решений, технологической дисциплины и ответственности. К счастью, у нас в России — в стране, где ГЭС вносят огромный вклад в энергетическое хозяйство, — есть и технологии, и высококлассные специалисты, способные развивать гидроэнергетику на принципах эффективности, экологичности и безопасности.

Недостатки гидроэлектростанций

  • Большие водохранилища затопляют значительные участки земли, которые могли бы использоваться с другими целями. Целые города становились жертвами водохранилищ, что вызывало массовые переселения, недовольство и экономические трудности.
  • Разрушение или авария плотины большой ГЭС практически неминуемо вызывает катастрофическое наводнение ниже по течению реки.
  • Сооружение ГЭС неэффективно в равнинных районах.
  • Протяженная засуха снижает и может даже прервать производство электроэнергии. ГЭС.
  • Уровень воды в искусственных водохранилищах постоянно и резко меняется. На их берегах строить загородные дома не стоит!
  • Плотина снижает уровень растворенного в воде кислорода, поскольку нормальное течение реки практически останавливается. Это может привести к гибели рыбы в искусственном водохранилище и поставить под угрозу растительную жизнь в самом водохранилище и вокруг него.
  • Плотина может нарушить нерестовый цикл рыбы. С этой проблемой можно бороться, сооружая рыбоходы и рыбоподъемники в плотине или перемещая рыбу в места нереста с помощью ловушек и сетей. Однако это приводит к удорожанию строительства и эксплуатации ГЭС.

Вопрос

С учетом всех проблем использования природного топлива и ядерной энергии для производства электричества почему бы не сооружать больше гидроэлектростанций? В мире огромное количество рек. Разве не стоит строить как можно больше гидростанций?

Ответ

Большинство мест для строительства гидроэлектростанций уже используются. Количество плотин и водохранилищ, которые можно построить на реке, ограниченно. Энергия, отбираемая электростанцией у реки, уже не может использоваться ниже по течению. Если на реке построить слишком много электростанций, неминуемы экономические конфликты, связанные с распределением энергии.

Основные преимущества гидроэнергетики очевидны. Разумеется, главным преимуществом гидроресурсов является их возобновляемость: запас воды практически неисчерпаем. При этом гидроресурсы значительно опережают в развитии остальные виды возобновляемых источников энергии и способны обеспечивать энергией большие города и целые регионы.

Кроме того, пользоваться этим источником энергии можно достаточно просто, что подтверждается длительной историей гидроэнергетики. Например, генераторы гидроэлектростанций можно включать или выключать в зависимости от энергопотребления.

В то же время достаточно спорным является вопрос о влиянии гидроэнергетики на окружающую среду. С одной стороны, эксплуатация гидроэлектростанций не приводит к загрязнению природы вредными веществами, в отличии от выбросов СО 2 , производимыми ТЭС и возможными авариями на АЭС, которые могут понести за собой глобальные катастрофические последствия.

Но в то же время образование водохранилищ требует затопления значительных территорий, зачастую плодородных, а это становится причиной негативных изменений в природе. Плотины часто перекрывают рыбам путь к нерестилищам, нарушают естественное течение рек, приводят к развитию застойных процессов, снижают способность к «самоочищению», а следовательно резко изменяют качество воды.

Себестоимость производимой энергии на ГЭС гораздо ниже, чем на атомных и тепловых электростанциях, и они способны быстрее выходить на режим выдачи рабочей мощности после включения, однако их строительство обходится дороже.

Современные технологии производства гидроэлектроэнергии позволяют получать довольно высокий КПД. Иногда он в два раза превышает аналогичные показатели обычных теплоэлектростанций. Во многом такая эффективность обеспечивается особенностями оборудования гидроэлектростанций. Оно очень надёжно, да и пользоваться им просто.

Кроме того, всё используемое оборудование обладает ещё одним важным преимуществом. Это длительный срок службы, что объясняется отсутствием теплоты в процессе производства. И действительно часто менять оборудование не нужно, поломки случаются крайне редко. Минимальный срок службы ГЭС - около пятидесяти лет. А на просторах бывшего Советского Союза успешно функционируют станции, построенные в двадцатых или тридцатых годах прошлого века. Управление гидроэлектростанциями осуществляется через центральный узел, и вследствие этого в большинстве случаев там работает небольшой персонал.

Заключение

гидроэлектростанция турбина себестоимость энергия

Потенциал гидроэнергетики можно определить, суммировав все существующие на планете речные стоки. Расчёты показали, что мировой потенциал равен пятидесяти миллиардам киловатт в год. Но и эта весьма впечатляющая цифра составляет лишь четверть от количества осадков, ежегодно выпадающих во всём мире.

С учётом условий каждого конкретного региона и состояния мировых рек действительный потенциал водных ресурсов составляет от двух до трёх миллиардов киловатт. Эти цифры соответствуют годовой выработке энергии в 10000 - 20000 миллиардов киловатт в час.

Чтобы осознать потенциал гидроэнергетики, выраженный этими цифрами, следует сопоставить полученные данные с показателями нефтяных теплоэлектростанций. Чтобы получить такое количество электроэнергии, станциям, работающим на нефти, требовалось бы около сорока миллионов баррелей нефти каждый день.

Вне всяких сомнений, гидроэнергетика в перспективе не должна оказывать негативное воздействие на окружающую среду или свести его к минимуму. При этом необходимо добиться максимального использования гидроресурсов.

Это понимают многие специалисты и поэтому проблема сохранения природной среды при активном гидротехническом строительстве актуальна как никогда. В настоящее время особенно важен точный прогноз возможных последствий строительства гидротехнических объектов. Он должен дать ответ на многие вопросы, касающиеся возможности смягчения и преодоления нежелательных экологических ситуаций, которые могут возникнуть при строительстве. Кроме того, необходима сравнительная оценка экологической эффективности будущих гидроузлов. Правда, до реализации таких планов ещё далеко, так как сегодня разработка методов определения экологического энергопотенциала не производится.