Отличительные признаки видов печати

Для изготовления денежных знаков используются следующие виды печати:

а) Высокая печать

Формы высокой печати устроены таким образом, что рельефные печатающие элементы расположены выше, чем пробельные элементы. При печати лист бумаги прижимают к печатающей форме, и находящаяся на печатающих элементах краска выдавливается к краям элементов. При этом по краям получаемых изображений образуется характерный "бортик" из краски и создаётся небольшая деформация бумаги. Схема процесса высокой печати приведена на рисунке. Именно таким образом выполнены изображения серий и номеров купюр на большинстве валют мира.

Схема процесса высокой печати:

б) Глубокая металлографская печать

Формы глубокой печати устроены противоположным образом, по сравнению с формами высокой печати. Элементы изображений углублены в печатной форме. При печати краска из форм прилипает к бумаге и при высыхании образует выступающий над поверхностью бумаги красочный слой достаточно большой толщины, который легко почувствовать на ощупь. Схема процесса глубокой печати приведена на рисунке. С помощью металлографской печати достигается высокая точность и четкость воспроизведения рисунка. Самые мельчайшие элементы изображений на купюрах выполнены именно данным способом.

Схема процесса глубокой печати

в) Офсетная (плоская) печать

В формах офсетной печати печатающие и пробельные элементы расположены в одной плоскости. Процесс печати с таких форм основан на избирательном смачивании пробельных элементов водой, а печатающих - жирной краской. Изготовление печатной формы сводится к получению на поверхности формного материала устойчивых гидрофобных (жировосприимчивых) и гидрофильных (влаговосприимчивых) плёнок. Для получения форм плоской печати крайне важно создать на поверхности формного материала (формной основы) устойчивые печатающие и пробельные элементы. При печати краска с формы сначала переносится на промежуточное эластичное резиновое полотно, а с него на бумагу. Краска ложится на оттиск тонким ровным слоем, сквозь который хорошо просматривается структура бумаги. Напомним, что именно таким способом печатают журналы, буклеты, календари, книги и др. При этом потребительская продукция печатается методом растрового офсета͵ ᴛ.ᴇ. состоящего из упорядоченных разноцветных точек. А на банкнотах применяется штриховой офсет, где изображение состоит из сплошных линий.

Штриховой офсет.

г) Орловская печать

Орловская печать была разработана российским изобретателœем И.И. Орловым в 1890 году. Впервые она была применена при изготовлении кредитных билетов номиналом 25 руб. образца 1894 года.

Орловская печать - ϶ᴛᴏ многокрасочная однопрогонная печать, позволяющая достигать на изображении точного совмещения красок разных цветов в неразрывных линиях. При этом граница перехода является четкой, отсутствуют перекосы и разрывы штрихов, нет наложений одного цвета на другой). Воспроизвести эффект орловской печати обычными классическими способами печати невозможно. Для этого используется сложнейшее высокоточное оборудование, которые могут иметь только фирмы с государственной лицензией на его использование.

д) Ирисовая печать (ирисный раскат).

Также является разновидностью офсетной печати. При ирисовой печати в элементах получаемых изображений присутствует плавный переход одного цвета в другой. При этом четкая граница перехода отсутствует. Обычно данным способом печати наносятся т.н. подкладные сетки на банкнотах.

ЗАЩИТНЫЕ ПРИЗНАКИ РУБЛЕЙ РОССИИ (модификация 2004 ᴦ.)

1. Скрытые радужные полосы (на всœех номиналах).

2. Микроперфорация (на банкнотах 100, 500, 1000 рублей)

3. Ныряющая металлизированная нить (на всœех номиналах).

4.Цветопеременная краска.

5. Защитные волокна.

6. Рельефное изображение.

7. Скрытое изображение. (Кипп-эффект)

8. Водяной знак.

А. П. Андреев

эксперт-криминалист

Автором статьи на практическом примере доказана ошибочность гипотезы о возможности идентификации струйного печатающего устройства по расположению дискретных элементов (микрокапель чернил) на отпечатанном изображении.

Ключевые слова: струйная печать; струйный принтер; идентификация струйного принтера; экспертиза документов; стохастический растр.

А 65

ББК 67.52:32.973.2-044

УДК 343.983:681.327.2

ГРНТИ 10.85.31; 20.53.31

Код ВАК 12.00.12; 05.13.15

On the identification of an ink jet recording apparatus of the arrangement of discrete elements (microdroplets of ink) in the printed image

A. P. Andreev

expert criminalist

The author of the article on a practical example proved the fallacy of the hypothesis about the possibility of identification of an inkjet printing apparatus of the arrangement of discrete elements (microdroplets of ink) in the printed image.

Keywords: inkjet printing; inkjet printer; inkjet printer identification; examination of documents; stochastic raster.

_____________________________________

Возможность идентификации струйного печатающего устройства по расположению дискретных элементов (микрокапель чернил) основывается на гипотезе, выдвинутой С. Б. Шашкиным и рядом его соавторов , об индивидуальности расположения этих элементов на отпечатанных изображениях.

Например, в учебном пособии ЭКЦ МВД России авторы следующим образом оценивают результаты проведённого ими эксперимента: «Исследование распечаток проводилось способом визуального и микроскопического сопоставлений взаиморасположения пикселов на сопоставимых по содержанию, графической композиции участках документов. При этом были получены следующие результаты и выводы из них.

Анализ серии распечаток одного и того же электронного образа документа, выполненных на принтерах различных фирм, без замены печатающей головки позволяет сделать вывод о высокой степени сходства во взаиморасположении дискретных элементов, образующих изображение, многократно полученное с помощью одного и того же принтера. Здесь нельзя говорить о полной идентичности, поскольку часть пикселов, порядка пяти из ста, выделяемых на любом участке изображения, от распечатки к распечатке то пропадают, то появляются снова. Объясняется это периодически возникающими сбоями в работе отдельных чернильных каналов.

При печати одного и того же электронного образа документа на различных устройствах одной и той же модели или при замене картриджей на принтерах фирмы Hewlett Packard при прочих одинаковых условиях (идентичном программном обеспечении, сохранении размещения распечатываемого электронного образа относительно границ документа) взаимное расположение пикселов существенно изменялось, что объясняется совместным действием следующих факторов производственного и эксплуатационного характера: вариациями в размещении сопел на печатающей головке, возникающими на этапе её изготовления, индивидуальными отклонениями в работе механизма её позиционирования, неисправностью отдельных чернильных каналов. Данные факторы обусловливают наличие на документе, подготовленном на струйном принтере, частных признаков конкретного ПУ или его печатающей головки. Таким образом, признаком, который позволяет индивидуализировать конкретное струйное знакосинтезирующее устройство, является взаиморасположение дискретных элементов, образующих изображение (курсив А. А.)» .

По сути, авторы пособия, ссылаясь на серию своих экспериментов, утверждают о возможности идентификации конкретного струйного печатающего устройства путём сравнения расположения микрокапель чернил на отпечатанных изображениях, совпадение которых будет свидетельствовать о выполнении двух документов с одинаковыми изображениями при помощи одного печатающего устройства (в составе программно-аппаратного комплекса компьютер-принтер-программное обеспечение), а их различие может свидетельствовать об использовании другого печатающего устройства или о печати на том же устройстве, но с иными настройками. Таким образом, авторы рассматриваемой гипотезы утверждают об индивидуальности расположения сопел на конкретной печатающей головке, возникающей на этапе её изготовления, которая в совокупности с особенностями функционирования механизмов печатающего устройства и даёт возможность его идентификации по отпечатанному изображению.

В последующем рассматриваемая гипотеза была подтверждена в рамках научно-исследовательской работы по теме «Криминалистическое исследование документов, изготовленных с помощью капельно-струйных печатающих устройств», оконченной в 2009 году авторским коллективом Саратовского юридического института МВД России: «Также подтверждена на большом количестве экспериментального материала идея С.Б. Шашкина о возможности решения идентификационного вопроса по изображениям, полученным с помощью одного и того же принтера при условиях печати изображений с одного электронного оригинала, одного и того же программного обеспечения, при одних и тех же режимах печати» .

Эти идеи нашли поддержку не только в научной среде, но и у отдельных практикующих экспертов.

Так, сотрудник ЭКЦ ГУВД по Алтайскому краю А.И. Хмыз в 2011 году, со ссылкой на указанную здесь работу С. Б. Шашкина, А. В. Гортинского и А. В. Пахомова, писал, что: «Сравнение сопоставимых по содержанию, графической композиции элементов изображений на поддельных денежных билетах и изображений на листах бумаги (в данном случае представленных по инициативе эксперта) позволяет решить поставленную перед экспертом идентификационную задачу. Так, совпадение по форме, размерам, цвету, расположению и взаиморасположению точек, которыми выполнены изображения (фото № 6), даёт основание для вывода о том, что изображения выполнены с помощью одного и того же печатающего устройства, следовательно, позволяет установить факт использования конкретного печатающего устройства при изготовлении поддельных денежных билетов, ценных бумаг и документов.

Фото № 6. Совпадение по расположению и взаиморасположению точек (одного цвета), которыми образованы изображения на исследуемой купюре (слева) и на купюре, расположенной на листе бумаги (справа), изъятом при обыске у подозреваемого.

Установление данного факта является существенным при доказывании виновности лица в совершении преступлений, связанных с изготовлением поддельных денежных билетов, бланков ценных бумаг и документов» .

Сотрудники ЭКЦ УМВД России по Ивановской области С. А. Смотров и И. С. Смотров в своей статье приводят пример экспертизы, проведённой в рамках расследования уголовного дела, в результате которой «при исследовании изображений водяных знаков более чем на 3000 поддельных денежных билетах были выявлены совокупности расположения точек капель красящего вещества», позволившие «с учётом установленного ранее факта печати указанных изображений с помощью одного программно-аппаратного комплекса с применением одних и тех же настроек процесса печати … сделать вывод о едином источнике происхождения изображений водных знаков на всех исследованных объектах» . В заключение авторы статьи пишут: «применение положений научно-исследовательской работы, проведённой под руководством П. В. Бондаренко, к исследованию поддельных денежных билетов Банка России позволило установить факт печати на них полутоновых изображений, например, изображений водяных знаков, с помощью одного программно-аппаратного комплекса с применением одних и тех же настроек процесса печати» .

Таким образом, можно констатировать, что научные и методические источники содержат абсолютно чёткие данные о возможности идентификации струйных принтеров по расположению микрокапель чернил на распечатанных изображениях, на основании которых проведены отдельные экспертизы в рамках расследования реальных уголовных дел. К сожалению, во всех опубликованных работах по этой тематике нет ни подробного описания хода и результатов экспериментов, ни соответствующего иллюстративного материала, также отсутствуют конкретные методические рекомендации по проведению данного вида исследований. Эти факторы в совокупности возможно и повлияли на то, что рассматриваемый подход не нашёл широкого применения на практике и в целом вызывает скептическое к себе отношение. Однако, он представляется простым в применении и, в случае получения положительных результатов по итогам проверки, может служить достаточно эффективным средством для решения такой трудной на сегодняшнее время задачи, как идентификация струйных печатающих устройств.

Для изучения возможности идентификации струйных печатающих устройств по расположению микрокапель чернил на отпечатанных изображениях автором настоящей статьи была проведена исследовательская работа с использованием струйных печатающих устройств различных марок и моделей, в ходе которой изучались следующие показатели.

1. Устойчивость отображения и индивидуальность расположения микрокапель чернил на одинаковых изображениях, отпечатанных при одинаковых параметрах вывода на печать на одном устройстве.

2. Устойчивость отображения и индивидуальность расположения микрокапель чернил на одинаковых изображениях, отпечатанных при одинаковых параметрах вывода на печать при помощи разных устройств одной модели (однотипных печатающих головок).

3. Устойчивость отображения и индивидуальность расположения микрокапель чернил на одинаковых изображениях, отпечатанных при одинаковых параметрах вывода на печать при помощи разных устройств разных моделей (разнотипных печатающих головок).

4. Влияние изменения параметров печати, а также использования разных программно-аппаратных комплексов (компьютеров с установленными разными операционными системами, разными графическими редакторами) на устойчивость отображения и индивидуальность расположения микрокапель чернил на одинаковых изображениях, выполненных при помощи одного устройства.

5. Индивидуальность формы, размеров и расположения сопел на струйных печатающих головках.

Экспериментальная работа проводилась путём распечатки одного и того же цветного изображения на нескольких принтерах одной модели или на одном принтере, но с заменой картриджей с печатающей головкой. В полученных изображениях сравнивалось расположение микрокапель чернил одинаковых цветов при помощи стереомикроскопа и методом компьютерного наложения изображений (условия эксперимента приведены в приложении 1, иллюстрации результатов - в приложениях 2, 3) .

Сравнением полученных образцов и изучением рабочей поверхности печатающих головок струйных печатающих устройств установлены следующие факты.

1. На одинаковых изображениях, отпечатанных при одинаковых параметрах вывода на печать на одном устройстве, взаиморасположение микрокапель чернил имеет чётко повторяющуюся структуру, в которой могут быть различия в виде отсутствия отдельных капель, при этом какого-либо существенного смещения одних капель относительно других не наблюдается (рис. 3-5, 7-9, 11-13, 15-17). Таким образом, в экспериментальных изображениях устойчиво повторяется растровая структура, образованная отдельными микрокаплями чернил.

2. На одинаковых изображениях, отпечатанных при одинаковых параметрах вывода на печать при помощи разных устройств одной модели, наблюдается картина, соответствующая описанной выше, характерная для изображений, отпечатанных на одном устройстве - устойчиво повторяющаяся растровая структура (рис. 6, 10, 14, 18).

Такая же картина наблюдается на изображениях, отпечатанных на одном устройстве при помощи картриджей разных моделей (рис. 19, 20), головки которых имеют существенные различия по форме, размерам и расположению сопел (рис. 36).

3. На одинаковых изображениях, отпечатанных при одинаковых параметрах вывода на печать при помощи разных устройств разнообразных моделей, имеются существенные различия в наличии и расположении микрокапель (рис. 21, 22).

4. На одинаковых изображениях, выполненных при помощи одного устройства при разных параметрах вывода на печать наблюдается следующая картина:

а) при использовании разных компьютеров (в том числе производстве печати через сетевые подключения) и операционных систем, но в одной графической программе с одними настройками в изображениях наблюдалась устойчивая повторяющаяся растровая структура (рис. 23, 24);

б) при использовании одной графической программы, но с изменением настроек наблюдались существенные различия растровой структуры (рис. 25, 26).

5. Сравнением структуры рабочих поверхностей печатающих головок различных струйных печатающих устройств установлено отсутствие каких-либо существенных различий в форме, размерах и расположении сопел на печатающих головках одной модели (устройство или картридж одного типа) (рис. 27-35, 37).

Обобщая результаты эксперимента, можно констатировать, что гипотеза об индивидуальном для каждого печатающего устройства (печатающей головки) расположении микрокапель чернил струйного печатающего устройства на отпечатанных изображениях на данный момент является ошибочной. Одной из причин этого является сделанный авторами указанных работ акцент на оценке конечного результата процесса струйной печати - красочных изображений, при этом расположение дискретных точек рассматривалось как след-отображение конкретного печатающего устройства, обусловленное особенностями (вариационностью) формы и размещения сопел на печатающих головках, возникающими на этапе их изготовления . Процессы же формирования электронного изображения и вывода его на печать подробно не рассматривались.

Струйная печатающая головка является лишь исполнителем в цепочке получения конечного изображения. Растрирование изображений в процессе печати осуществляется посредством так называемого «обработчика растрового изображения» , который может быть реализован аппаратно (за счёт растрирующих модулей, встроенных в принтер) или программно (через драйвер принтера или компоненты графического редактора, через который осуществляется вывод изображения на печать). Применительно к рассматриваемой теме, в струйных принтерах бытового назначения, процессы растрирования осуществляются программно и управляются либо драйвером принтера, либо компонентами графического редактора. Например, «электроника струйных пьезоэлектрических принтеров Epson бюджетного класса не оснащена растровым процессором и интерпретатором языка Adobe PostScript. Управляющий микроконтроллер принтера выполняет функцию управления печатающей головкой с построчной буферизацией поступающих из драйвера принтера отрастрированных графических данных (координат капель на листе). Координаты капель, информация об их размере и настройки принтера передаются на микроконтроллер при помощи специального низкоуровневого языка управления ESC.P2. В свою очередь, функции растрового процессора и системы управления цветом выполняет установленное на персональном компьютере прикладное программное обеспечение принтера» .

Вышеизложенное подтверждается и результатами проведённого эксперимента: устойчивым совпадением размещения микрокапель в изображениях, отпечатанных при одинаковых параметрах печати при помощи разных устройств или картриджей одной модели (с использованием однотипных печатающих головок), а также в изображениях, отпечатанных при помощи картриджей разных моделей (разнотипных печатающих головок) на одном устройстве, и различием в их размещении при изменении параметров печати или печати из разных графических программ.

Таким образом, результаты проведённых экспериментов однозначно доказывают невозможность идентификации струйного печатающего устройства по расположению дискретных элементов (микрокапель чернил) на отпечатанном изображении.

Приложение 1

ОБОРУДОВАНИЕ, ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И МЕТОДЫ СРАВНЕНИЯ ИЗОБРАЖЕНИЙ

1. В качестве экспериментальных изображений использовались тестовые страницы для цветных принтеров, содержащие цветные и монохромные полутоновые изображения, на которых имеются участки с разреженной растровой структурой, позволяющей выделять и изучать расположение отдельных микрокапель чернил разных цветов.

Учитывая повторяемость результатов на разных изображениях, формат и ограниченный объём статьи, эксперимент проиллюстрирован на примере тестовой страницы от Fotocommunity prints (оригинал файла http://printer-one.ru/wp-content/uploads/2015/05/test1.jpg).

2. Распечатка изображений проводилась при помощи цветных струйных принтеров следующих моделей:

Модели с печатающей головкой в картридже: Canon PIXMA IP2700 (оригинальные картриджи Canon PG-512+CL-513); HP 5652 (оригинальные картриджи НРС6657А+НРС6658А и трёхцветные фирмы PScom, совместимые с НР6657А);

Модель со встроенной печатающей головкой Epson L800;

Модель со сменной печатающей головкой Canon MG 5240.

3. Сравнение растровой структуры проводилось на одинаковых участках изображений методом сопоставления при помощи стереомикроскопа Leica M165, а также способом компьютерного наложения следующим образом:

а) распечатанные изображения сканировались при помощи сканера Epson Perfection 4870 Photo с разрешением 1200 dpi в формате TIFF;

б) в графическом редакторе Adobe Photoshop CS3 загруженные изображения переводились в режим CMYK и разделялись на отдельные каналы, по которым проводилось сравнение (например, рис. 3, 4);

в) одноимённые каналы сравнивались путём создания многослойного изображения и совмещения слоёв при помощи инструмента «Свободное трансформирование» (Ctrl+T): режим наложения слоёв «Нормальный», непрозрачность верхнего слоя 50 %, для наглядности одно из изображений инвертировалось (Ctrl+I) (например, рис. 5).

Как показал эксперимент наиболее эффективно сравнение по жёлтому каналу (Y), при этом растровые точки в канале соответствуют микрокаплям жёлтых чернил на распечатанном изображении (рис. 1, 2).

Рис. 1. Изображения фрагмента, отпечатанного на цветном струйном принтере. Изображение вверху получено при помощи микроскопа, внизу - отсканировано при помощи планшетного сканера (разрешение 1200 dpi, формат TIFF).



Рис. 2. Вверху - жёлтый канал (Y) изображения, расположенного внизу на рис. 1. Внизу - результат компьютерного наложения этого изображения (прозрачность слоя 30 %) и изображения, расположенного вверху на рис. 1: видно полное совмещение расположения растровых элементов жёлтого канала и микрокапель жёлтых чернил.

4. Условия печати образцов и результаты сравнения растров были сведены в таблицу, при помощи которой осуществлён итоговый анализ полученных данных (шапка таблицы приведена ниже).

Приложение 2

РЕЗУЛЬТАТЫ СРАВНЕНИЯ РАСТРОВОЙ СТРУКТУРЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИЗОБРАЖЕНИЙ ПО ЖЁЛТОМУ КАНАЛУ (Y)

(для примера приведены фрагменты экспериментальных изображений)


Рис. 3. Жёлтый канал (Y) изображений, отпечатанных на первом принтере Epson L800.


Рис. 4. Жёлтый канал (Y) изображений, отпечатанных на втором принтере Epson L800.


Рис. 5. Совмещение изображений, отпечатанных на одном принтере Epson L800: слева - расположенных на рис. 3 (первый принтер), справа - расположенных на рис. 4 (второй принтер).

Рис. 6. Совмещение изображений, отпечатанных на разных принтерах Epson L800: расположенных на рис. 3 (справа) и рис. 4 (справа).


Рис. 7. Жёлтый канал (Y) изображений, отпечатанных на первом МФУ Canon MG 5240.


Рис. 8. Жёлтый канал (Y) изображений, отпечатанных на втором МФУ Canon MG 5240.


Рис. 9. Совмещение изображений, отпечатанных на одном МФУ Canon MG 5240: слева - расположенных на рис. 7 (первое МФУ), справа - расположенных на рис. 8 (второе МФУ).

Рис. 10. Совмещение изображений, отпечатанных на разных МФУ Canon MG 5240: расположенных на рис. 7 (слева) и рис. 8 (справа).


Рис. 11. Жёлтый канал (Y) изображений, отпечатанных на принтере НР 5652 с использованием первого оригинального картриджа НР С6657А.


Рис. 12. Жёлтый канал (Y) изображений, отпечатанных на принтере НР 5652 с использованием второго оригинального картриджа НР С6657А.


Рис. 13. Совмещение изображений, отпечатанных на одном принтере НР 5652 с использованием одинаковых оригинальных картриджей НР С6657А: слева - расположенных на рис. 11 (первый картридж), справа - расположенных на рис. 12 (второй картридж).

Рис. 14. Совмещение изображений, отпечатанных на одном принтере НР 5652 с использованием разных оригинальных картриджей НР С6657А: расположенных на рис. 11 (слева) и рис. 12 (слева).


Рис. 15. Жёлтый канал (Y) изображений, отпечатанных на принтере НР 5652 с использованием первого совместимого картриджа PScom.


Рис. 16. Жёлтый канал (Y) изображений, отпечатанных на принтере НР 5652 с использованием второго совместимого картриджа PScom.


Рис. 17. Совмещение изображений, отпечатанных на одном принтере НР 5652 с использованием одинаковых совместимых картриджей PScom: слева - расположенных на рис. 15 (первый картридж), справа - расположенных на рис. 16 (второй картридж).

Рис. 18. Совмещение изображений, отпечатанных на одном принтере НР 5652 с использованием разных совместимых картриджей PScom: расположенных на рис. 15 (слева) и рис. 16 (слева).


Рис. 19. Жёлтый канал (Y) изображений, отпечатанных на принтере НР 5652 при помощи разных печатающих головок: слева - с использованием оригинального картриджа НР С6657А (изображение на рис. 11, слева), справа - с использованием совместимого картриджа PScom (изображение на рис. 16, справа).

Рис. 20. Совмещение изображений, расположенных на рис. 19.


Рис. 21. Жёлтый канал (Y) изображений, отпечатанных на принтере Epson L800 (слева) и МФУ Canon MG 5240 (справа).

Рис. 22. Совмещение изображений, расположенных на рис. 21.


Рис. 23. Жёлтый канал (Y) изображений, отпечатанных через графический редактор Adobe Photoshop CS3 на принтере Epson L800 с использованием разных компьютеров и операционных систем: слева - ОС Windows XP 32-bit, справа - Windows 7 64-bit.

Рис. 24. Совмещение изображений, расположенных на рис. 23.


Рис. 25. Жёлтый канал (Y) изображений, отпечатанных через графический редактор Adobe Photoshop CS3 на принтере Epson L800 с изменением параметров управления цветом: слева - режим RGB параметры по умолчанию, справа - режим RGB с изменением параметров: яркость -50/контраст +50.

Рис. 26. Совмещение изображений, расположенных на рис. 25.

Приложение 3

ИЗОБРАЖЕНИЯ СТРУЙНЫХ ПЕЧАТАЮЩИХ ГОЛОВОК, ПОЛУЧЕННЫЕ ПРИ ПОМОЩИ МИКРОСКОПА LEICA M165 С ПРОГРАММНЫМ ОБЕСПЕЧЕНИЕМ LEICA APPLICATION SUITE И ГРАФИЧЕСКОГО РЕДАКТОРА ADOBE PHOTOSHOP CS3

Рис. 27. Увеличенные изображения группы сопел чёрных чернил двух печатающих головок МФУ Canon MG 5240. Вверху и в центре - сравниваемые головки, внизу - результат компьютерного наложения этих изображений (верхний слой инвертирован): видно полное совмещение формы, размеров и расположения сопел.

Рис. 28. То же, что на рис. 27 при большем увеличении.

Рис. 29. Увеличенные изображения группы сопел голубых чернил двух печатающих головок МФУ Canon MG 5240. Вверху и в центре - сравниваемые головки, внизу - результат компьютерного наложения этих изображений (без инверсии): видно полное совмещение формы, размеров и расположения сопел.

Рис. 30. Увеличенные изображения рабочей поверхности печатающих головок двух картриджей НР С6658А.

Рис. 31. Увеличенные изображения групп сопел печатающих головок, изображённых на рис. 30. Вверху и в центре сравниваемые картриджи, внизу - результат компьютерного наложения этих изображений (верхний слой инвертирован): видно полное совмещение формы, размеров и расположения сопел.

Рис. 32. То же, что на рис. 31 при большем увеличении (изображены группы сопел светло-пурпурных и светло-голубых чернил).

Рис. 33. Увеличенные изображения групп сопел двух картриджей НР С6657А. Вверху и в центре сравниваемые картриджи, внизу - результат компьютерного наложения этих изображений (верхний слой инвертирован): видно полное совмещение формы, размеров и расположения сопел.

Рис. 34. Увеличенные изображения рабочей поверхности печатающих головок двух картриджей PScom, совместимых с НР 6657А.

Рис. 35. Увеличенные изображения групп сопел пурпурных и жёлтых чернил печатающих головок, изображенных на рис. 34. Вверху и в центре сравниваемые картриджи, внизу - результат компьютерного наложения этих изображений (верхний слой инвертирован): видно полное совмещение формы, размеров и расположения сопел.

Рис. 36. Результат компьютерного наложения одномасштабных изображений рабочих поверхностей оригинального картриджа НР 6657А (верхний слой инвертирован) (рис. 33 в центре) и совместимого картриджа PScom (рис. 35 в центре): видно различие в форме, размерах и расположении сопел.




Рис. 37. Увеличенные изображения группы сопел жёлтых чернил двух картриджей Canon CL-513. Вверху и в центре сравниваемые картриджи, внизу - результат компьютерного наложения этих изображений (верхний слой инвертирован): видно полное совмещение формы, размеров и расположения сопел.

Литература:

1. Шашкин С. Б., Воробьев С. А. К проблеме идентификации струйных знакосинтезирующих печатающих устройств // Экспертная практика. - М. ЭКЦ МВД России, 2000. - Вып. 50.

2. Шашкин С. Б. Теоретические и методологические основы криминалистической экспертизы документов, выполненных с использованием средств полиграфической и оргтехники. Дисс. ... д-ра юрид. наук. - Саратов, 2003.

3. Шашкин С. Б., Гортинский А. В., Пахомов А. В. Технико-криминалистическое исследование документов, изготовленных с использованием знакосинтезирующих печатающих устройств: Учебное пособие. - М.: ЭКЦ МВД России, 2004.

4. Криминалистическое исследование документов, изготовленных с помощью капельно-струйных печатающих устройств: Отчет о НИР (рук. П. В. Бондаренко). - Саратов: Саратовский юридический институт МВД России, 2009.

5. Хмыз А. И. Идентификация многофункциональных печатающих устройств, использующих принцип струйной печати // Сборник материалов криминалистических чтений. - Барнаул: Барнаульский юридический институт МВД России, 2011. - Вып. 7.

6. Смотров С. А., Смотров И. С. Идентификация исследования документов, напечатанных с применением капельно-струйных печатающих устройств // Криминалистика и судебная экспертиза. - Киев: МЮ Украины, 2013. - Вып. 58. - Ч. 2.

7. Пшеничный Д. В., Сысуев И. А. Оптимизация цветовоспроизведения в пьезоэлектрической струйной печати // Омский научный вестник. - Омск: Омский государственный технический университет, 2012. - Вып. 2 (110).

Классификаций печатающих устройств, включающих группу струйных принтеров, ранее было разработано несколько. Разные авторы в разное время предлагали свою версию систематизации данного вида печатающих устройств (С.Б. Шашкин, Н.Н. Шведова и др.). Однако в связи с быстрой сменой поколений этих устройств, а также появлением новых модификаций способа струйной печати имеется потребность в ее уточнении.

Основания предлагаемой классификации струйных принтеров мы делим на криминалистически значимые (используя совокупность которых можно установить модель печатающего устройства и марку чернил) и факультативные (сведения, дающие возможность органам следствия и дознания строить версии о возможностях преступников, совершивших преступление, связанное с использованием струйного принтера).

К криминалистически значимым основаниям можно отнести:

  1. способ печати;
  2. размер капли красящего вещества;
  3. свойства красящих веществ;
  4. свойства бумажно-протяжного механизма;
  5. способ управления печатающим устройством.

К факультативным основаниям относятся:

1) скорость печати;

2) стоимость печатающего устройства;

3) область применения печатающего устройства.

Рассмотрим более подробно каждое из оснований предложенной классификации и раскроем их содержание.

Способ печати. В настоящее время используют два способа струйной печати: струйные принтеры с использованием твердого красителя и струйные принтеры с жидкими чернилами. Струйные принтеры с твердым красителем (phase-change ink-jet) на практике используются реже принтеров с жидкими чернилами из-за высокой себестоимостью отпечатка.

Струйные принтеры с жидкими чернилами можно разделить на устройства непрерывного действия и устройства дискретного действия. Последние, в свою очередь, реализуют пузырьковую технологию с нагреванием чернил и технологию, основанную на действии пьезоэффекта. Обе технологии описаны в литературе, в том числе криминалистической.

Пьезоэлектрический принцип печати позволяет регулировать объем капли, вылетающей из сопла, в пределах 3-6 ступеней и не требует чернил, рассчитанных на высокие температуры. Пузырьковая технология струйной печати реализуется следующим образом. В стенку сопла встроен нагревательный элемент. При подаче электрического импульса температура его резко возрастает. Затем практически все чернила, находящиеся в контакте с нагревательным элементом мгновенно испаряются.

Расширение пара вызывает ударную волну. Под действием избыточного давления капелька чернил буквально «выстреливается» из сопла, после чего чернильный пар конденсируется, пузырек лопается, и в сопле образуется зона пониженного давления, под действием которого новая порция чернил всасывается в сопло.

Важной конструктивной особенностью такого печатающего устройства является простая конструкция сопел, что обеспечивает высокую надежность каждого сопла, уменьшает размер печатающего узла и увеличивает разрешение печати.

Размер капли красящего вещества. Производители принтеров, такие как «НР», «Canon» и др., используют технологию изменения размера капли от 3 до 6 пикалитров, что отражается на качестве получаемых в результате печати текстов и изображений. Фирма-производитель «Epson» предлагает новый тип многослойной пьезоэлектрической головки, которая устраняет сателлиты — брызги от капли красящего вещества, что повышает четкость, в основном, монохромных изображений.

Ключевым моментом этой технологии является возвратное движение мениска, которое призвано обеспечивать обратное втягивание капелек-сателлитов, формирующихся при вылете основной капли. Эта процедура, осуществляемая с помощью активного менискового контроля, и есть его главное достоинство и одновременно технологическая роль при печати. Иными словами, предназначение менискового контроля, избавляющего от возникновения вредных сателлитов или формирования капель неправильной формы, как раз состоит в том, чтобы сразу после образования, отрыва и вылета основной капли из дюзы произвести резкое втягивание диафрагмы.

Благодаря этому осуществляется остановка вибрации чернильной массы, в том числе и на срезе сопла дюзы печатающей головки, а также происходит втягивание излишков выплеснувших чернил обратно в сопло. Поэтому капли-спутники просто не успевают окончательно сформироваться и не сопровождают основную чернильную каплю в полете. Благодаря вышеописанной технологии достигаются следующие преимущества при печати: траектория капли не нарушается; позиционирование капли на бумаге становится предельно точным; капля имеет правильную сферическую форму; точка на бумаге имеет правильную форму; отсутствует «чернильный туман» на изображении. Таким образом, размер капли может быть дифференцирующим признаком при установлении технологии реализации струйной печати и модели принтера.

В настоящее время у большинства моделей струйных принтеров размер печатающей точки является фиксированным. Однако некоторые модели (например, выпускаемые фирмами Canon и Epson) используют печатающую головку, имеющую сопла двух диаметров, вследствие чего отпечатанная точка может иметь два фиксированных размераШашкин С.Б. Цветные струйные принтеры с жидкими чернилами как объект идентификационного исследования // Информатика в судебной экспертизе: сб. трудов. Саратов: СЮИ МВД России, 2003.Шашкин С.Б., Соклакова Н.А., Тюрина Н.В. Некоторые аспекты криминалистического исследования текстов, отпечатанных на капельно-струйных принтерах. // Криминалистика в XXI веке: сб. науч. работ. М.: ГУ ЭКЦ МВД РФ, 2001..

Технический прогресс в области цветных знакоситезирующих печатающих устройств привел к появлению принтеров с жидким красителем на основе вводно-спиртового связующего. При этом формирование полноцветного изображения осуществляется в соответствии с принципом субстрактивного синтеза цвета. В качестве базовых обычно используются чернила четырех цветов: триадных (голубого, пурпурного, желтого) и черного. В последнее время расширилась палитра применяемых цветов до шести (картриджи принтеров серии Epson Stule Photo дополнительно к триадным имеют бледно-голубые и бледно-пурпурные чернила)Шашкин С.Б., Воробьев С.А. К проблеме идентификации струйных знакоситнезирующих устройств // Экспертная практика. 2001. № 50. или восьми (например, модели принтеров HP PhotoSmart 8453 и Canon PIXMA iP8500).

Красочные точки располагаются в виде параллельных линий, в одном месте может быть от 2 до 16 капель красок 4 цветов в различных сочетанияхМедведев А.С. Справочник по видам и способам печати для экспертов ЭКП. М., 2003. Ч. 5. Некоторые печатающие устройства..

Свойства красящих веществ. Спектр свойств красящих веществ струйных принтеров достаточно широк, и эта проблема пока не нашла отражения в криминалистической литературе. Изучены эти свойства могут быть разными методами. Например, микроскопическое исследование морфологии штрихов позволят дифференцировать относительно вязкое красящее вещество принтеров с термоэлектрической головкой от красящего вещества принтеров с пьезоэлектрической головкой.

Все чернила для струйных принтеров делятся на две большие категории: dye-based (на жидком красителе) и pigment based (на твердом или пигментном красителе).

Свойства бумажно-протяжного механизма. Их можно охарактеризовать по размеру используемого листа бумаги, размеру полей при печати, способности устройства печатать без полей, а также по видам бумаги. В зависимости от размера используемого листа бумаги различают принтеры форматов А4, А3, А2, А1, А0. Принтеры форматов А2, А1 и АО принято называть плоттерами.

В настоящее время некоторые модели принтеров оснащены функцией печати на нерабочей поверхности лазерных дисков. Например, принтер «PREDATOR — 845CD» предназначен для высококачественной полноцветной прямой печати на компакт-дисках с помощью термоструйной технологии разрешением до 1200 dpi. Минимальный объем капли составляет 5 пикалитров. Данная технология позволяет сразу же после печати производить влагозащитное покрытие. Для получения высококачественных фотоотпечатков принтеры «НР» используют технологию, которая позволяет наносить в одну точку фотоизображения до 29 капель цветных чернил, что существенно расширяет диапазон воспроизводимых цветов и уменьшает зернистость изображения.

Способ управления печатающим устройством. Можно выделить три группы печатающих устройств: управляемые посредством персонального компьютера, многофункциональные печатающие устройства (возможность печати, минуя персональный компьютер, — принтер/сканер/копир) и устройства с возможностью печати с карт памяти других устройств (фотоаппаратов, флеш-карт и т.д.).

Печатающие устройства для ЭВМ могут работать только в комплекте с ЭВМ, используя соответствующее (в основном, стандартное) программное обеспечение. У них полностью отсутствует какой-либо оригиналодержатель. Конструктивно ряд печатающих устройств для ЭВМ чрезвычайно разнообразен — от миниатюрных «карманных» устройств для ноутбуков до специализированных, с шириной запечатываемого поля до 25 м.

Многофункциональные копировально-множительные устройства занимают промежуточное положение между устройствами непосредственного копирования и печатающими устройствами для ЭВМ. Как правило, это высокотехнологичные устройства, дающие возможность выполнять не только непосредственное копирование (оригинал — копия), но и имеющие встроенный микропроцессор, позволяющий через стандартный интерфейс подключаться к ЭВМ. Поэтому ввод изображений может производиться не только с оригиналодержателя (или слайд-проектора) через оптическую систему, но и в электронном (цифровом) виде.

К многофункциональным копировально-множительным устройствам также следует отнести устройства, у которых функция копирования не является единственной. Следует заметить, что копии, выполненные на разных по конструктивным особенностям устройствах, но реализующих одинаковый способ воспроизведения, обладают, как правило, одинаковым набором характерных признаков. Таким образом, в большинстве случаев определить конструктивные особенности копировально-множительного устройства возможно только в вероятностной формеОпределение вида копировально-множительных устройств, используемых при подделке денежных билетов, ценных бумаг и документов: методич. рекомендации / Е.В. Стариков и др. М.: ЭКЦ МВД России, 1999..

Факультативные основания классификации принтеров, такие как скорость печати, стоимость устройства и область применения принтера, дают возможность органам следствия и дознания построить версии о личности преступника, а именно предположить, какими денежными средствами он мог располагать, сколько времени могло понадобиться злоумышленнику для организации преступления и его реализации и т.д.


В этих типах принтеров краска непосредственно переносится на бумагу.

Принцип работы каплеструйных принтеров похож на принцип работы электронно-лучевой трубки. В таких принтерах краска наливается в специальный сосуд, имеющий в дне настолько маленькое отверстие (это отверстие называется форсунка), что в нормальных условиях краска из сосуда не вытекает. Однако при кратковременной подаче разности потенциалов между форсункой и бумагой, краска начинает вытекать небольшими каплями, которые затем ускоряются в электрическом поле, отклоняются на определенный угол системой отклоняющих пластин и попадают на бумагу, оставляя на ней след. Изображение на листе бумаги, так же как и у матричных принтеров, формируется из точек, но за счет того, что точка у каплеструйного принтера намного меньше, чем у матричного, изображение на листе бумаги получается лучшего качества.

Высокая скорость печати таких принтеров определяется тем, что нет необходимости перемещать громоздкие печатающие головки.

Достоинство таких принтеров заключается в том, что при использовании нескольких сосудов с разными красками можно получить цветное изображение.

Однако эти принтеры не нашли широкого применения за счет того, что в них используется высоковольтное напряжение. Сейчас такие принтеры можно встретить лишь где-нибудь на производстве. Они используются там, в основном, для нанесения даты изготовления (типичным примером может служить ликероводочное производство, где такими принтерами наносится дата изготовления и другая техническая информация непосредственно на бутылки с напитком).

Следующей разновидностью каплеструйных принтеров были капельные принтеры (их еще зачастую называют струйными), (см. рисунок 1). В таких принтерах есть головка, нижняя часть которой находится на небольшом расстоянии (около 1 мм и даже меньше) от листа бумаги. В нижней части головки на небольшом расстоянии друг от друга находятся несколько форсунок (иногда до нескольких сотен и даже тысяч), объединенных в прямоугольную матрицу. Внутри корпуса, чуть выше этих форсунок находятся микроскопические резисторы (каждый над определенной форсункой). Сосуд с краской, нагревательные резисторы и форсунки зачастую объединяются в один блок, который носит название картридж.

Рисунок 1 – Струйный принтер

Краска стекает на резисторы и задерживается под ними т.к. не может просочиться через маленькие форсунки. При подаче напряжения на определенный резистор он нагревается, краска вскипает и под давлением выплескивается через форсунку. Т.к. расстояние между форсункой и бумагой невелико, то капля краски попадает в строго определенное место на листе бумаги. Затем печатающая головка перемещается на некоторое расстояние и процесс повторяется.

Большое количество форсунок обусловлено тем, что при большем количестве форсунок можно большее количество капель выплеснуть на бумагу одновременно. Это определяет скорость печати таких принтеров. Скорость печати принтеров такого типа может достигать нескольких десятков страниц формата А4 в минуту.

Разрешающая способность таких принтеров составляет до 1200 точек на дюйм.

Достоинствами этого типа принтеров являются:

    высокая скорость печати

    возможность цветной печати при использовании нескольких сосудов с разной краской

    высокая разрешающая способность принтеров, что позволяет получать распечатки фотографического качества

К недостаткам данных типов принтеров можно отнести:

    высокую стоимость расходных материалов, по сравнению с матричными принтерами

    низкую ремонтопригодность (ведь если засорилась форсунка или сгорел нагревательный резистор, то проще будет купить новый картридж, чем починить сломанный)

Струйный способ бесконтактной печати не требует промежуточного носителя информации об изображении оригинала, как это необходимо в электрофотографии при использовании фоторецептора. Этот способ позволяет наносить краску непосредственно на бумагу. Струйную печать (рис. 3.26) можно разделить на непрерывную струйную печать и собственно капельно-струйную печать . Процессы предполагают в основном использование жидких печатных красок. Однако в последнее время начинают применяться и так называемые термокраски, которые при нагревании переходят из твердого в жидкое состояние. Они подаются на печатный лист и отверждаются при снижении температуры. На рис. 3.30 представлены принципиальные технологии струйной печати вместе с характерными для них показателями.

В непрерывной струйной печати (рис. 3.30,б) создается непрерывный поток малых электростатически заряженных капель краски. Заряженные капли движутся в электростатическом поле, которое отклоняет их поток устройством, аналогичным по конструкции используемому в электронно-лучевых трубках. Управляя напряженностью поля, в соответствии с данными, характеризующими изображение, обеспечивается их попадание или непопадание на бумагу. Заряд капель соответствует негативному изображению (аналогично изложенному ранее принципу электрофотографии по рис. 3.27). Лишь незначительная часть потока капель, соответствующая воспроизводимому оригиналу, попадает на материал, преобладающая же часть возвращается в красочную систему.

При капельно-струйной печати в противоположность непрерывной капля производится только тогда, когда этого требует изображение на оригинале. Этот способ печати подразумевает тепловое (термо-струйная печать) и пьезоэлектрическое образование капель.

При термоструйной печати капли образуются при нагревании и частичном испарении в сопловой камере вещества, основанного, например, на парафинах.

При пьезоэлектрической печати происходит образование и выброс капель, благодаря механической деформации стенок сопловой камеры, вследствие подачи электрического сигнала и пьезоэлектрических свойств материала, из которого выполнены стенки.

Установлено, что возможная частота производства капель при термическом их получении ниже, чем при пьезоэлектрической технологии. Технические системы струйной печати представляют собой самую компактную технику переноса информации из оригинала на обычную бумагу (сравнимо с экспонированием фотографической бумаги). Необходимо лишь на основе сигнала изображения сгенерировать каплю краски без какого-либо промежуточного носителя и перенести ее на запечатываемый материал.

В целом скорость печатных систем, основанных на способе струйной печати, мала по сравнению со способами печати с традиционной печатной формой. Они работают с меньшей производительностью, в особенности, когда изображение наносится отдельными соплами. На рис. 3.31 показана струйная печатная техника, которая с помощью четырех систем (отдельная для каждой из четырех печатных красок) производит четырехкрасочную печать. Бумага закрепляется на барабане, а отдельные секции (для голубой, пурпурной, желтой и черной красок) переносят однокрасочные изображения на нее при соответствующем движении головки по направлению оси быстро вращающегося барабана. На показанном устройстве многокрасочная печать страниц формата А3 производится, примерно, за 5 мин. (Разрешение 300 dpi, около десяти градаций). Поэтому подобные устройства используются, главным образом, при изготовлении пробных оттисков на этапе цифровой допечатной подготовки применительно к технологии «Компьютер – печатная форма» с тем, чтобы заранее оценить содержание файла и качество оттисков.

В струйной печати, имеющей относительно низкое разрешение (от 300 до 600 dpi), можно, как упоминалось ранее, получить больше градаций, осаждая на подложку несколько капель. При большей частоте их генерации возможно получить до 30 уровней. В системах струйной печати большой производительности на ширину выводимой страницы применяют сопловые линейки.

На рис. 3.32 в качестве примера показана система струйной печати, в которой, если это необходимо, на одном полотне по его ширине перемещаются две пишущие головки (240 dpi). Подобная система может осуществлять многокрасочную печать с лицевой и оборотной стороны полотна (конечно, только декоративными красками, а не красками основных цветов печатного процесса – триадными).

Рисунок 3.30 - Технологии струйной печати:

a непрерывная струйная печать;

б капельно-струйная печать

Особой проблемой в струйной печати является высыхание краски, ее закрепление на поверхности бумаги. В целом для высококачественной печати необходима бумага с покрытием. Использование специально разработанных красок совместно с различными методами сушки может привести к большему ассортименту используемой бумаги. Применение термокрасок в струйной печати интересно с точки зрения их быстрого высыхания и разнообразия сортов бумаги.